Math, asked by SarcasticQueen, 6 months ago

If 10,000 is invested at an interest rate of 6% per annum , what is the amount after 4 years if the compounding of interest is done .

Answers

Answered by amazingbuddy
9

\sf{\bold{\purple{\underline{\underline{Given : }}}}}

  • Principle = Rs. 10,000
  • Rate = 6%
  • Time = 4 years

______________________

\sf{\bold{\green{\underline{\underline{To\:Find :}}}}}

CI = ??

______________________

\sf{\bold{\red{\underline{\underline{Solution :}}}}}

\sf{\blue{\boxed{\bold{Amount = P \bigg\lgroup 1 + \dfrac{rate}{100}\bigg\rgroup^{time}}}}} ⠀⠀⠀⠀

\sf :\implies\: {\bold{ Amount = 10000 \bigg\lgroup 1 + \dfrac{6}{100} \bigg\rgroup^{4} }}

\sf :\implies\: {\bold{ Amount = 10000\times \dfrac{106\times  \times 106\times 106\times 106}{100\times 100\times 100\times 100}}}

\sf :\implies\: {\bold{ Amount =\dfrac {126247696}{10000}}}

\sf :\implies\: {\bold{ Amount = Rs. 12624.7696}}⠀⠀⠀

\sf{\orange{\boxed{\bold{CI = Amount - Principle }}}}

\sf :\implies\: {\bold{ CI = Rs. 12624.7696 - Rs. 10000}}

\sf :\implies\: {\bold{CI = Rs.2624.77 }}

_____________________

\sf{\bold{\pink{\underline{\underline{Answer}}}}}

Rs. 10000 will earn Rs. 2624.77 as Compound Interest in 4

years at 6% per annum compounded annually..

Answered by Anonymous
30

Given:-

  • Principal = 10000
  • Rate = 6%
  • Time = 4 years

To find:-

Compound Interest after 4 years.

Solution:-

We know,

\sf{A = P\bigg(1+\dfrac{r}{100}\bigg)^t}

= \sf{A = 10000\bigg(1+\dfrac{6}{100}\bigg)^4}

= \sf{A = 10000\bigg(\dfrac{106}{100}\bigg)^4}

= \sf{A = 10000\bigg(\dfrac{106}{100}\bigg)\bigg(\dfrac{106}{100}\bigg)\bigg(\dfrac{106}{100}\bigg)\bigg(\dfrac{106}{100}\bigg)}

= \sf{A = \dfrac{126247696}{10000}}

= \sf{A = 12624.7696}

\sf{CI = A-P}

= \sf{CI = 12624.7696 - 10000}

= \sf{CI = 2624.7696}

=> \sf{CI = Rs.2624.77}

Therefore CI after 4 years will be Rs.2624.77

______________________________________

Formula Used:-

\sf{A = P\bigg(1+\dfrac{r}{100}\bigg)^t}

\sf{CI = A-P}. [Where A = Amount]

______________________________________

Extras:-

\sf{A = P\bigg(1+\dfrac{r}{200}\bigg)^{2t}}

When compounded annually.

______________________________________

Note:-

A = Amount

P = Principal

t = Time

r = Rate

CI = Compound Interest.

_______________________________________

Similar questions