Chemistry, asked by takesudhir07, 11 months ago



IF 10^21 molecules are removed from 200 mg CO2 then the number of moles of CO2 left will be

Answers

Answered by san1729
3

Answer:

0.00288 moles (approximately)

Explanation:

All the calculations are approximately correct .

Attachments:
Answered by Teluguwala
0

 \sf1 \:  mole  \: of  \: Co_{2}  \: ⟶ \: 44 \: g  \: of  \: Co _{2}

 \sf \: 6 \times  {10}^{23}  \:  molecule \:  of  \: Co_{2}  \: ⟶ \: 44 g   \: Co _{2}

 \sf \:   {10}^{21}  \:  molecule \:  of  \: Co_{2}  \: ⟶ \:?

 \displaystyle \qquad \sf \:  =  \:   \frac{{10}^{21}  \times 44}{6 \times  {10}^{23} }

 \displaystyle \qquad \sf \:  =  \:   7.33 \times  {10}^{ - 2} g

 \displaystyle \qquad \sf \:  =  \:   7.33 \times  {10}^{ - 2}  \times  {10}^{3} g

 \displaystyle \qquad \sf \:  =  \:   7.33 \times  {10}g

\displaystyle \qquad \sf \:  =  \:   73.3mg

 \sf Amount \:  of \:  Co_{2} \:   left = 200-73.3

\sf  \qquad \:  = \:  126.7mg

\displaystyle  \sf No.of  \: gram \:  molecules =  \frac{Wt \:  of \:  molecule}{Gram \: molecular \: wt}

\displaystyle  \sf  \qquad \:  =  \:  \frac{126.7 \times  {10}^{ - 3} \cancel g}{44 \cancel g}

\displaystyle  \sf  \qquad \:  =  \:  2.8 \times  {10}^{ - 3}   mol

\displaystyle  \sf  \qquad \:  =  \:  2.8 \:  m.  mol

\displaystyle  \sf  \qquad \:  =  \:  0.0028mg \:  \:  \:  \:  \: (1g = 1000mg)

 \:

Similar questions