Math, asked by lalalalalal19, 5 months ago

if 10 cosA - 11 Sin A = 12, Show that 10 SinA + 11 CosA = ± √78​

Answers

Answered by mantu9000
0

We have:

10 \cos A - 11 \sin A = 12                   ........ (1)

Let 10\sin A + 11 \cos A = x              ........ (2)

We have to show that, 10\sin A + 11 \cos A = \sqrt{77}.

Solution:

Squaring and adding equations (1) and (2), we get

(10\cos A -11\sin A)^2+(10\sin A +11\cos A)^2= 12^{2} +x^2

100\cos^2 A +121\sin^2 A-2\sin A\cos A+100\sin^2 A +121\cos^2 A+2\sin A\cos A= 144 +x^2

100(\sin^2 A+\cos^2 A) +121(\sin^2 A+\cos^2 A)= 144 +x^2

100(1) +121(1)= 144 +x^2

⇒ 100 + 121 = 144 +x^2

⇒ 221 = 144 +x^2

x^{2} = 221 -144

x^{2} = 77

⇒ x = ± \sqrt{77}

Thus, 10\sin A + 11 \cos A = \sqrt{77}, shown.

Answered by pulakmath007
3

SOLUTION

GIVEN

 \sf{10 \cos A  -  11 \sin A = 12}

TO PROVE

 \sf{10 \sin A + 11 \cos A =  \pm \:  \sqrt{77} }

PROOF

Here it is given that

 \sf{10 \cos A  -  11 \sin A = 12}

Squaring both sides we get

 \sf{{(10 \cos A  -  11 \sin A)}^{2} = 12}

 \sf{ \implies100 \:  {\cos}^{2}  A   - 220 \:  \cos A \:   \sin A + 121  \:  { \sin}^{2} A = 144}

 \sf{ \implies100 \:(1 -   {\sin}^{2}  A)   - 220 \:  \cos A \:   \sin A + 121  \: (1 -  { \cos}^{2} A )= 144}

 \sf{ \implies100 -  100 \:  {\sin}^{2}  A   - 220 \:  \cos A \:   \sin A + 121  -  121 \: { \cos}^{2} A )= 144}

 \sf{ \implies100 \:  {\sin}^{2}  A   +  220 \:  \cos A \:   \sin A   + 121 \: { \cos}^{2} A = 100 + 121 - 144}

 \sf{ \implies100 \:  {\sin}^{2}  A   +  220 \:  \cos A \:   \sin A   + 121 \: { \cos}^{2} A = 77}

 \implies   \sf{{(10 \sin A + 11 \cos A) }^{2}  = 77  }

 \implies   \sf{(10 \sin A + 11 \cos A)   =  \pm \:  \sqrt{77} }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of (1+cos18)(1+cos54)(1+cos126)(1+cos162)

https://brainly.in/question/22916202

2. If cosθ+secθ=√2,

find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

Similar questions