Math, asked by shreeyashindulkar, 2 months ago

If 10 sin^4 x + 15 cos^4 x = 6,
find, 27 cosec^6 x + 8 sec^ 6 x​

Answers

Answered by amansharma264
6

EXPLANATION.

⇒ 10sin⁴x + 15cos⁴x = 6.

As we know that,

We can write equation as,

⇒ 10sin⁴x + 15cos⁴x = 6(sin²x + cos²x)².

⇒ 10sin⁴x + 15cos⁴x = 6[sin⁴x + cos⁴x + 2sin²xcos²x].

⇒ 10sin⁴x + 15cos⁴x = 6sin⁴x + 6cos⁴x + 12sin²xcos²x.

⇒ 10sin⁴x - 6sin⁴x + 15cos⁴x - 6cos⁴x - 12sin²xcos²x = 0.

⇒ 4sin⁴x + 9cos⁴x - 12sin²xcos²x = 0.

⇒ (2sin²x - 3cos²x)² = 0.

⇒ 2sin²x - 3cos²x = 0.

⇒ 2sin²x = 3cos²x.

⇒ sin²x/cos²x = 3/2.

⇒ tan²x = 3/2.

⇒ tan(x) = √3/√2.

As we know that,

⇒ tanθ = Perpendicular/base = p/b.

⇒ tan(x) = √3/√2 = p/b.

By using Pythagoras theorem, we get.

⇒ H² = P² + B².

⇒ H² = (√3)² + (√2)².

⇒ H² = 3 + 2.

⇒ H² = 5.

⇒ H = √5.

⇒ cosecθ= h/p = √5/√3.

⇒ secθ = h/b = √5/√2.

To find :

⇒ 27cosec⁶x + 8sec⁶x.

⇒ 27 x [√5/√3]⁶ + 8 x [√5/√2]⁶.

⇒ 27 x 125/27 + 8 x 125/8.

⇒ 125 + 125 = 250.

27cosec⁶x + 8sec⁶x = 250.

Answered by niha123448
0

Step-by-step explanation:

ANSWER ✍️

⇒ 10sin⁴x + 15cos⁴x = 6.

As we know that,

We can write equation as,

⇒ 10sin⁴x + 15cos⁴x = 6(sin²x + cos²x)².

⇒ 10sin⁴x + 15cos⁴x = 6[sin⁴x + cos⁴x + 2sin²xcos²x].

⇒ 10sin⁴x + 15cos⁴x = 6sin⁴x + 6cos⁴x + 12sin²xcos²x.

⇒ 10sin⁴x - 6sin⁴x + 15cos⁴x - 6cos⁴x - 12sin²xcos²x = 0.

⇒ 4sin⁴x + 9cos⁴x - 12sin²xcos²x = 0.

⇒ (2sin²x - 3cos²x)² = 0.

⇒ 2sin²x - 3cos²x = 0.

⇒ 2sin²x = 3cos²x.

⇒ sin²x/cos²x = 3/2.

⇒ tan²x = 3/2.

⇒ tan(x) = √3/√2.

As we know that,

⇒ tanθ = Perpendicular/base = p/b.

⇒ tan(x) = √3/√2 = p/b.

By using Pythagoras theorem, we get.

⇒ H² = P² + B².

⇒ H² = (√3)² + (√2)².

⇒ H² = 3 + 2.

⇒ H² = 5.

⇒ H = √5.

⇒ cosecθ= h/p = √5/√3.

⇒ secθ = h/b = √5/√2.

To find :

⇒ 27cosec⁶x + 8sec⁶x.

⇒ 27 x [√5/√3]⁶ + 8 x [√5/√2]⁶.

⇒ 27 x 125/27 + 8 x 125/8.

⇒ 125 + 125 = 250.

27cosec⁶x + 8sec⁶x = 250.

hope this helps you!!

thank you ⭐

Similar questions