Math, asked by CutYR, 5 months ago

If 10 terms is 137 and 9 terms is 126 then find 11th term.​

Answers

Answered by Anonymous
20

Explanation:

ㅤㅤㅤㅤㅤ

 \tt \bull \: a_{10} = 137 \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: (given) \\  \\  \leadsto \tt \:  a + (10 - 1)d = 137 \\  \\  \leadsto \tt \: \red{  a + 9d = 137}  \:  \: \green{  -  -  - (1)}

____________________

ㅤㅤㅤㅤㅤ

 \tt \bull\: a_{9} = 126\:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: (given) \\  \\  \leadsto \tt \:  a + (9- 1)d = 126\\  \\  \leadsto \tt \: \red{  a + 8d = 126}  \:  \: \green{  -  -  - (2)}

ㅤㅤㅤㅤㅤ

Substrate eqn.(1) and eqn.(2),

ㅤㅤㅤㅤㅤ

\tt  \cancel{a} + 9d = 137 \\ \tt  \cancel{a }+ 8d = 126 \\  -  -  -  -  -  -  -  \\  \tt  \:  \:  \:  \:  \: \:  \purple{d  \:   =  \: 11}

ㅤㅤㅤㅤㅤ

Put d = 11 in eqn. (1),

ㅤㅤㅤㅤㅤ

\leadsto \tt \: a + 9 \times 11 = 137 \\  \\  \leadsto \tt \: a + 99 = 137 \\  \\  \leadsto \tt \: a = 137 - 99 \\  \\  \leadsto \tt \:  \pink{a = 38}

ㅤㅤㅤㅤㅤ

Now, we ask to find 11th term of an AP,

ㅤㅤㅤㅤㅤ

\leadsto \tt \: a_{11} = 38 + (11 - 1)  \times 11 \\  \\ \leadsto \tt \: a_{11} =38 + 10\times 11 \\  \\ \leadsto \tt a_{11} =38 + 110\\  \\ \leadsto \tt \orange{a_{11} =148}

ㅤㅤㅤㅤㅤ

Hence, 11th term of an AP is 148.

Answered by sesh3979
12

Step-by-step explanation:

please mark as brainlist answer........

Attachments:
Similar questions