Math, asked by kavubalakrishnan, 1 year ago

if 100/3*3^n-3^n-1=891 , then find the value of n?

Answers

Answered by thesmartlerner
6

Answer:

.3

Step-by-step explanation:

It can be written as , {3^n + (3^n * 3^1) } / { 3^n + (3^n * 3^-1)}

By taking 3^n common,

3^n {1 + 3^1} / 3^n { 1 + 3^-1}

Cancelling 3^n ,

{1 + 3 } / { 1 + 1/3 }

=> 4 / {4/3}

=>{ 4 *3} / 4

=> 3. answer

Answered by pramothchembottil
0

Answer:

3

Step-by-step explanation:

100/3*3^n-3^n-1 =891

divide 3^n by 3 we get 3^n-1

so 100*3^n-1-3^n-1 =891

take 3^n-1 common

3^n-1(100-1) = 891

3^n-1(99) =891

3^n-1=891/99

3^n-1=9

or 3^n-1=3^2

so n-1=2

n=2+1

n=3

Similar questions