if 100/3*3^n-3^n-1=891 , then find the value of n?
Answers
Answered by
6
Answer:
.3
Step-by-step explanation:
It can be written as , {3^n + (3^n * 3^1) } / { 3^n + (3^n * 3^-1)}
By taking 3^n common,
3^n {1 + 3^1} / 3^n { 1 + 3^-1}
Cancelling 3^n ,
{1 + 3 } / { 1 + 1/3 }
=> 4 / {4/3}
=>{ 4 *3} / 4
=> 3. answer
Answered by
0
Answer:
3
Step-by-step explanation:
100/3*3^n-3^n-1 =891
divide 3^n by 3 we get 3^n-1
so 100*3^n-1-3^n-1 =891
take 3^n-1 common
3^n-1(100-1) = 891
3^n-1(99) =891
3^n-1=891/99
3^n-1=9
or 3^n-1=3^2
so n-1=2
n=2+1
n=3
Similar questions