Math, asked by lakshitahuja01, 1 month ago

If 1003x + 1003-X = 4, then the value of √1003 8x-1003-8x/679(1003-1003-x)​

Answers

Answered by pulakmath007
23

SOLUTION

GIVEN

 \displaystyle \sf{ {1003}^{x} +  {1003}^{ - x}  = 4 }

TO DETERMINE

 \displaystyle \sf{  \sqrt{ \frac{{1003}^{8x}  -   {1003}^{ - 8x}}{679({1003}^{x}  -  {1003}^{ - x})} }  }

EVALUATION

Here it is given that

 \displaystyle \sf{ {1003}^{x} +  {1003}^{ - x}  = 4 }

 \displaystyle \sf{ Let \:  \:  \: y = {1003}^{x}}

Then above becomes

 \boxed{ \displaystyle \sf{y +  \frac{1}{y}  = 4 }}

Squaring both sides we get

 \displaystyle \sf{ {y}^{2}  +  \frac{1}{ {y}^{2} } + 2 = 16  }

 \boxed{ \:  \displaystyle \sf{  \implies \: {y}^{2}  +  \frac{1}{ {y}^{2} }  = 14 } \: }

Again Squaring both sides we get

 \displaystyle \sf{  \implies \: {y}^{4}  +  \frac{1}{ {y}^{4} }  + 2 = 196}

 \boxed{ \:  \displaystyle \sf{  \implies \: {y}^{4}  +  \frac{1}{ {y}^{4} }   = 194} \:  \: }

Now

 \displaystyle \sf{  \sqrt{ \frac{{1003}^{8x}  -   {1003}^{ - 8x}}{679({1003}^{x}  -  {1003}^{ - x})} }  }

 \displaystyle \sf{ =   \sqrt{ \frac{{y}^{8}  -    \frac{1}{ {y}^{8} } }{679 \bigg(y -  \frac{1}{y} \bigg)  } }  }

 \displaystyle \sf{ =   \sqrt{ \frac{ \bigg({y}^{4}   +    \frac{1}{ {y}^{4} } \bigg)\bigg({y}^{4}  -    \frac{1}{ {y}^{4} } \bigg) }{679 \bigg(y -  \frac{1}{y} \bigg)  } }  }

 \displaystyle \sf{ =   \sqrt{ \frac{ \bigg({y}^{4}   +    \frac{1}{ {y}^{4} } \bigg)\bigg({y}^{2}   + \frac{1}{ {y}^{2} } \bigg)\bigg({y}^{2}  -    \frac{1}{ {y}^{2} } \bigg) }{679 \bigg(y -  \frac{1}{y} \bigg)  } }  }

 \displaystyle \sf{ =   \sqrt{ \frac{ \bigg({y}^{4}   +    \frac{1}{ {y}^{4} } \bigg)\bigg({y}^{2}   + \frac{1}{ {y}^{2} } \bigg) \bigg(y  +  \frac{1}{y} \bigg)\bigg(y -  \frac{1}{y} \bigg)  }{679 \bigg(y -  \frac{1}{y} \bigg)  } }  }

 \displaystyle \sf{ =   \sqrt{ \frac{ \bigg({y}^{4}   +    \frac{1}{ {y}^{4} } \bigg)\bigg({y}^{2}   + \frac{1}{ {y}^{2} } \bigg) \bigg(y  +  \frac{1}{y} \bigg)}{679  } }  }

 \displaystyle \sf{ =   \sqrt{ \frac{194 \times 14 \times 4}{679} }  }

 \displaystyle \sf{ =   \sqrt{ \frac{2 \times 14 \times 4}{7} }  }

 \displaystyle \sf{ =   \sqrt{ 2 \times 2 \times 4}  }

 \displaystyle \sf{ = 4}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

2. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

Similar questions