if 10sin^4A + 15cos^4A = 6 then 27cosec^6A + 8sec^6A = ?
Answers
Answered by
29
HELLO DEAR,
GIVEN:-
10sin⁴A + 15cos⁴A = 6
=> 10(sin²A)² + 15cos⁴A = 6
=> 10{(1 - cos²A)²} + 15cos⁴A = 6
=> 10{1 + cos⁴A - 2cos²A} + 15cos⁴A = 6
=> 10 + 10cos⁴A - 20cos²A + 15cos⁴A = 6
=> 25cos⁴A - 20cos²A + 4 = 0
=> 25cos⁴A - 10cos²A - 10cos²A + 4 = 0
=> 5cos²A(5cos²A - 2) - 2(5cos²A - 2) = 0
=> (5cos²A - 2)(5cos²A - 2) = 0
=> cos²A = 2/5
=> cosA = √2/√5 [ secA = √5/√2]
therefore,
sinA = √[1 - 2/5] = √3/√5 [ cosecA = √5/√3]
now,
27cosec^6A + 8sec^6A
=> 27 × {(√5/√3)²}³ + 8 × {(√5/√2)²}³
=> 27 × 125/27 + 8 × 125/8
=> 125 + 125
=> 250.
HENCE, 27cosec^6A + 8sec^6A = 250.
I HOPE IT'S HELP YOU DEAR,
THANKS
Answered by
10
Answer:
PLEASE CHECK YOUR ANSWER CAREFULLY
HOPE IT HELPS YOU
PLEASE MARK ME AS BRAINLIST
Attachments:
![](https://hi-static.z-dn.net/files/d02/91b05cc6cb2262675006cdb2c1f6f15f.jpg)
![](https://hi-static.z-dn.net/files/d9b/7229974f61b6eb1d3729d85954ad85a1.jpg)
Similar questions