English, asked by Liferisker, 1 year ago

If 1125= 3^m*5^n. find m and n

Answers

Answered by PADMINI
185

Answer :- m= 2 and n = 3.

Explanation :-

Given :-

If 1125= 3^m*5^n. find m and n

 \begin{array}{r | l} 5 & 1125 \\ \cline{2-2} 5 & 225 \\ \cline{2-2} 5 & 45 \\ \cline{2-2} 3 & 9 \\ \cline{2-2} 3 & 3 \\  \cline{2-2} & 1 \end{array}

LCM is :-

 {5}^{3}  \times  {3}^{2}

1125 =  {3}^{m}  \times  {5}^{n}

On comparison :-

 {3}^{m}  \times  {5}^{n}  =  {5}^{3}  \times  {3}^{2}

Hence, m= 2 and n = 3.

Similar questions