Math, asked by shreya4554, 1 year ago

If 1125=3m×5n.Find m and n

Answers

Answered by TheLostMonk
9

1125= 3^m × 5^n

3^2× 5^3 = 3^m × 5^n

on comparing both sides , we will have

m = 2 & n = 3

Answered by PADMINI
6

Correct Question :

If 1125 =   {3}^{m}  \:  {5}^{n} Find the value of m and n?

Given :

1125 =   {3}^{m}  \:  {5}^{n}

To find :

find the value of m and n

Solution :

LCM of 1125 :

 \begin{array}{r | I} 5 & 1125 \\ \cline{2-2} 5 & 225 \\ \cline{2-2} 5 & 45 \\ \cline{2-2} 3 & 9 \\ \cline{2-2} 3 & 3 \\ \cline{2-2} & 1 \end{array}

LCM = 5 x 5 x 5 x 3 x 3

 =  >  {5}^{3}  \:  {3}^{2}

 =  > 1125 =  {3}^{2}  \:  {5}^{3}

On Comparison, we get :

 =  >   {3}^{m}  \:  {5}^{n}  =  {3}^{2}  \:  {5}^{3}

 = > m = 2 \: and \: n = 3

Hence, the value of m=2 and n =3.

Similar questions