If [√(12)³]^5/2=(√2)^2a+1, find the value of a
Answers
Step-by-step explanation:
Given:-
[√(12)³]^5/2=(√2)^2a+1
To find:-
Find the value of a?
Solution:-
Given equation is [√(12)³]^5/2=(√2)^2a+1
=>[ {(12)³}½]^5/2 = [(2)½]^(2a+1)
Since √a = a½
=> (12)^(3×1/2×5/2) = 2^(1/2×(2a+1))
Since (a^m)^n = a^(mn)
=> 12^(15/4) = 2^(2a+1)/2
12 can be written as 12 = 2×2×3 = 2²×3
=> (2²×3)^(15/4) = 2^(2a+1)/2
=>( 2²)^15/4)×(3)^(15/4) = 2^(2a+1)/2
Since (ab)^m =a^m × b^m
=> 2^(2×15/4)×3^(15/4) = 2^(2a+1)/2
=>2^(15/2)×3^(15/4) = 2^(2a+1)/2
=> 3^(15/4) = [2^(2a+1)/2]/[2^(15/2)]
=> 3^(15/4) = 2^[{(2a+1)/2}-(15/2)]
Since a^m / a^n = a^(m-n)
=> 3^(15/4) = 2^(2a+1-15)/2
=>3^(15/4) = 2^(2a-14)/2
=> 3^(15/4) = 2^[2(a-7)/2]
=>3^(15/4) = 2^(a-7)
On taking logarithms both sides then
=> log 3^(15/4) = log 2^(a-7)
=> (15/4) log 3 = (a-7) log 2
Since log a^m = m log a
=> (15/4) log 3 = a log 2 - 7 log 2
=> a log 2 - 7 log 2 = (15/4) log 3
=> a log 2 = (15/4) log 3 +7 log 2
=> a =[ (15/4) log 3 + 7 log 2 ]/ ( log 2)
=> a = [(15 log 3 + 28 log 2)/4]/(log 2)
=> a = (15 log 3 + 28 log 2)/(4 log 2)
Answer :-
The value of a for the given problem is
(15 log 3 + 28 log 2)/(4 log 2)
Used formulae:-
- √a = a½
- (ab)^m =a^m × b^m
- a^m / a^n = a^(m-n)
- log a^m = m log a
- (a^m)^n = a^(mn)