Math, asked by imhurt, 17 days ago

If 12(9^x)-35(6^x)+18(4^x)=0 then sum of real values of x satisfying the given equation


fast...​

Answers

Answered by ItzKajalKaLover
2

Answer:

Basic Algebra Identities

(a + b)2 = a2 + b2 + 2ab

(a – b)2 = a2 + b2 – 2ab

a2 – b2 = (a + b)(a – b)

a2 + b2 = (a + b)2 – 2ab = (a – b)2 + 2ab

a3 + b3 = (a + b)(a2 – ab + b2)

a3 – b3 = (a – b)(a2 + ab + b2)

(a + b)3 = a3 + 3ab(a + b) + b3

(a – b)3 = a3 – 3ab(a – b) – b3

Answered by pulakmath007
0

The sum of real values of x satisfying the given equation = 1

Given :

\displaystyle \sf  12( {9}^{x} ) - 35( {6}^{x} ) + 18( {4}^{x} ) = 0

To find :

The sum of real values of x satisfying the given equation

Solution :

Step 1 of 3 :

Write down the given equation

Here the given equation is

\displaystyle \sf  12( {9}^{x} ) - 35( {6}^{x} ) + 18( {4}^{x} ) = 0

Step 2 of 3 :

Find all real values of x satisfying the given equation

\displaystyle \sf  12( {9}^{x} ) - 35( {6}^{x} ) + 18( {4}^{x} ) = 0

\displaystyle \sf{ \implies }12 \big( {( {3}^{2} )}^{x} \big)- 35\big( {(3 \times 2)}^{x} \big) + 18\big( {( {2}^{2} )}^{x} \big) = 0

\displaystyle \sf{ \implies }12( {3}^{2x} ) - 35( {3}^{x}  \times  {2}^{x} ) + 18( {2}^{2x} ) = 0

\displaystyle \sf Let \:  \: a = {3}^{x}  \:  \: and \:  \: b =  {2}^{x}

Then above equation becomes

\displaystyle \sf  12 {a}^{2}  - 35ab + 18 {b}^{2}  = 0

\displaystyle \sf{ \implies } 12 {a}^{2}  - (8 + 27)ab + 18 {b}^{2}  = 0

\displaystyle \sf{ \implies } 12 {a}^{2}  - 8 ab - 27ab + 18 {b}^{2}  = 0

\displaystyle \sf{ \implies }4a(3a - 2b) - 9b(3a - 2b) = 0

\displaystyle \sf{ \implies }(3a - 2b) (4a - 9b) = 0

\displaystyle \sf \therefore Either   \:  \: (3a - 2b) = 0  \:  \:  \: or \:  \:  \: (4a - 9b) = 0

Now,

\displaystyle \sf  (3a - 2b) = 0  \:  \:  \: gives

\displaystyle \sf  3a = 2b

\displaystyle \sf{ \implies } \frac{a}{b}  =  \frac{2}{3}

\displaystyle \sf{ \implies } \frac{ {3}^{x} }{ {2}^{x} }  =  \frac{2}{3}

\displaystyle \sf{ \implies } {\bigg( \frac{3}{2} \bigg)}^{x}  = {\bigg( \frac{3}{2} \bigg)}^{ - 1}

\displaystyle \sf{ \implies }x =  - 1

Again,

\displaystyle \sf  (4a - 9b) = 0  \:  \:  \: gives

\displaystyle \sf  4a = 9b

\displaystyle \sf{ \implies } \frac{a}{b}  =  \frac{9}{4}

\displaystyle \sf{ \implies } \frac{ {3}^{x} }{ {2}^{x} }  =  \frac{9}{4}

\displaystyle \sf{ \implies } {\bigg( \frac{3}{2} \bigg)}^{x}  = {\bigg( \frac{3}{2} \bigg)}^{ 2}

\displaystyle \sf{ \implies }x =  2

So the real values of x satisfying the given equation are - 1 and 2

Step 3 of 3 :

Find sum of real values of x satisfying the given equation

The real values of x satisfying the given equation are - 1 and 2

∴ The sum of real values of x satisfying the given equation

= - 1 + 2

= 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

#SPJ2

Similar questions