Math, asked by vincenzo17, 2 months ago

if 12x+17y=48and 17x+12y=68,then find the value of x-y​

Answers

Answered by SHINCHAN0824
1

X =4 . Y=0

Step-by-step explanation:

PLEASE MARK FOR BRAINLIEST :)

Attachments:
Answered by SpideySudar
0

Answer:

        x - y = 4

 

Step-by-step explanation:

G.T.,

      12x + 17y = 48  ---------------> (1)

      17x + 12y = 68  ---------------> (2)

From (1)

=> 12x + 17y = 48

=> 12x = 48 - 17y

=>x = \frac{48 - 17y}{12}  ---------------------->(3)

Substituting 'x' value in (2)

=>17 (\frac{48 - 17y}{12} ) = 12y = 68

=>\frac{17 (48 - 17y)}{12} + 12y = 68

=> \frac{816 - 289y}{12} +12y = 68

=> \frac{816 - 289y + 144y}{12} = 68

=> 816 - 145y = 68 (12)

=> 816 - 145y = 816

=> 145y = 0

=> y = 0      --------------------------> (4)

Using y = 0 in (1)

=> 12x + 17y = 48

=> 12x + 17(0) = 48

=> 12x + 0  = 48

=> x = \frac{48}{12}

=> x = 4

Now, we got the values x = 4 and y = 0

Then, x - y = 4 - 0 = 4

∵ Hence, we got the the answer x - y = 4

Similar questions