Math, asked by arun19767, 5 months ago

if 13 sin A =5 then the value
of tanA is​

Answers

Answered by SajanJeevika
2

13sinA=5

sinA=5÷13=

sinA=perpendicular÷Height

so, Perpendicular=5, Height=13

Base^2=Height^2 - Perpendicular^2

Base^2=169 - 25

Base^2=144

Base=√144

Base=12

CosA=Base÷Height

CosA=12÷13

tanA=Perpendicular÷base

tanA=5÷12

so, (5sinA-2cosA)÷tanA={5(5÷13)-2(12÷13)}÷(5÷12)

=(1.92-1.84)÷0.41

=0.08÷0.41

=0.19

Similar questions