if 13 sin A =5 then the value
of tanA is
Answers
Answered by
2
13sinA=5
sinA=5÷13=
sinA=perpendicular÷Height
so, Perpendicular=5, Height=13
Base^2=Height^2 - Perpendicular^2
Base^2=169 - 25
Base^2=144
Base=√144
Base=12
CosA=Base÷Height
CosA=12÷13
tanA=Perpendicular÷base
tanA=5÷12
so, (5sinA-2cosA)÷tanA={5(5÷13)-2(12÷13)}÷(5÷12)
=(1.92-1.84)÷0.41
=0.08÷0.41
=0.19
Similar questions
Hindi,
2 months ago
Math,
2 months ago
English,
5 months ago
Math,
11 months ago
Computer Science,
11 months ago