Math, asked by secretlife90, 1 year ago

if 13 sin theta minus 12 cos theta = 0 find the value of 2 sin theta cos theta / cos square theta - sin square theta

Answers

Answered by MaheswariS
1

Answer:

\frac{2\:sin\theta\:cos\theta}{cos ^2\theta-sin^2\theta}=\frac{312}{25}

Step-by-step explanation:

\text{Given:}

13\:sin\theta-12\:cos\theta=0

\implies\:13\:sin\theta=12\:cos\theta

\implies\:\frac{sin\theta}{cos\theta}=\frac{12}{13}

\implies\:tan\theta=\frac{12}{13}

\text{Now,}

\frac{2\:sin\theta\:cos\theta}{cos ^2\theta-sin^2\theta}

=\frac{sin\:2\theta}{cos\:2\theta}

=tan\:2\theta

=tan\:2\theta

=\frac{2tan\theta}{1-tan^2\theta}

=\frac{2(\frac{12}{13})}{1-(\frac{12}{13})^2}

=\frac{\frac{24}{13}}{1-\frac{144}{169}}

=\frac{\frac{24}{13}}{\frac{169-144}{169}}

=\frac{\frac{24}{13}}{\frac{25}{169}}

=\frac{24}{13}*\frac{169}{25}

=\frac{24}{1}*\frac{13}{25}

=\frac{312}{25}

\implies\frac{2\:sin\theta\:cos\theta}{cos ^2\theta-sin^2\theta}=\frac{312}{25}

Similar questions