If (√13+x + √13-x):(√13+x - √13-x)=5 then x is ?
Answers
Answered by
8
Step-by-step explanation:
(√13+x + √13-x):(√13+x - √13-x)=5
Multiplying and Dividing the LHS with (√13+x + √13-x)
[(√13+x + √13-x)]² : [(√13+x - √13-x)×(√13+x + √13-x)] = 5
(13+x) + (13-x) + {2•(√13+x)•(√13-x)} : (13+x-13+x) = 5
(a²-b² = (a+b)(a-b))
(26/2x) + [{2•(√13+x)•(√13-x)}/2x] = 5
(√13+x)•(√13-x) = (10x-26)/2
(squaring on both sides)
(13²-x²) = (5x-13)²
169 - x² = 25x² + 169 - (2•5x•13)
-26x² = -130x
x² = 5x
x = 5 (or) x = 0
Similar questions