if 13sin A=5 and A is acute find the value of
Attachments:
Answers
Answered by
10
see the pic for answer
Attachments:
varun112:
tnx bro
Answered by
6
Given:
13 sinA = 5
sinA = 5/13 = BC/AC
( perpendicular/hypotenuse)
In the figure, PERPENDICULAR(BC)= 5 & HYPOTENUSE(AC)= 13
By Pythagoras theorem
AC² = AB²+BC²
13²= AB²+ 5²
169 = AB² + 25
169 - 25 = AB²
144 = AB²
AB =√ 144
AB = 12
Find
cosA = AB/AC (B/H = 12/13
tanA = BC/AB (P/B) = 5/12
(5 sinA - 2cosA)/tanA
= (5 × 5/13)- (2×12/13) / 5/12
= (25/13 - 24/13) /5/12
= (1/13) / 5/12
= (1/13) × (12/5)
=12/65
(5 sinA - 2cosA)/tanA= 12/65
Hence, the value of
(5 sinA - 2cosA)/tanA = 12/65
==================================================================
Hope this will help you...
13 sinA = 5
sinA = 5/13 = BC/AC
( perpendicular/hypotenuse)
In the figure, PERPENDICULAR(BC)= 5 & HYPOTENUSE(AC)= 13
By Pythagoras theorem
AC² = AB²+BC²
13²= AB²+ 5²
169 = AB² + 25
169 - 25 = AB²
144 = AB²
AB =√ 144
AB = 12
Find
cosA = AB/AC (B/H = 12/13
tanA = BC/AB (P/B) = 5/12
(5 sinA - 2cosA)/tanA
= (5 × 5/13)- (2×12/13) / 5/12
= (25/13 - 24/13) /5/12
= (1/13) / 5/12
= (1/13) × (12/5)
=12/65
(5 sinA - 2cosA)/tanA= 12/65
Hence, the value of
(5 sinA - 2cosA)/tanA = 12/65
==================================================================
Hope this will help you...
Attachments:
Similar questions