Math, asked by bagyalakshmibanduru, 8 months ago

if -14/63=x/9=-18/y the (x,y)=​

Answers

Answered by Anonymous
19

Question:-

 \tt\implies\dfrac{ - 14}{63}  =  \dfrac{x}{9}  =  \dfrac{ - 18}{y}

find the value of (x,y)

Solution:-

 \tt\implies\dfrac{ - 14}{63}  =  \dfrac{x}{9}  =  \dfrac{ - 18}{y}

they are equal to each other ,so we can write

 \tt\implies\dfrac{ - 14}{63}  =  \dfrac{x}{9}  \:  \: and \:  \:  \dfrac{ - 14}{63}  =  \dfrac{ - 18}{y}

first of all find the value of x

 \tt\implies\dfrac{ - 14}{63}  =  \dfrac{x}{9}

\tt\implies\dfrac{ - 14}{ \not63 {}^{} }  =  \dfrac{x}{ \not9}

now we can write

 \tt\implies\dfrac{ - 14}{7}  = x

\tt\implies x =   \dfrac {  -  \not14}{ \not7}

\tt\implies x= -2

now we have find value of y, we get

\tt\implies\dfrac{ - 14}{63}  =  \dfrac{ - 18}{y}

using cross multiplication

 \tt\implies -14\times y= -18\times63

\tt\implies -14y= -1134

\tt\implies y =  \dfrac{ \not - 1134}{ \not - 14}

\tt\implies y=81

value of x= -2 and y= 81

Similar questions