If, 15 cot A=8, then find the value of tan A?
Answers
Answered by
18
Answer:
Cot A=8/15
It means p=15
B=8
Tan A =15/8
Step-by-step explanation:
I THINK IT WILL HELP YOU
Answered by
71
Given
We have given 15cotA= 8
To find
We have to find TanA
15cotA= 8
CotA= 8/15
We know that cotθ= Base/perpendicular
So,CotA= 8/15
We have to find TanA ?
we know that Tanθ= perpendicular/base
Tan A =15/8
______________________________________________
Further solve and finding other trigonometric values:
Here, base is 8 & perpendicular is 15
By using Pythagoras theorem:
H²= B²+P²
H²= 8²+15²
H²= 64+225
H²= 289
H=√289
H=17
hence, hypotenuse is 17
SinA= P/H =15/17
CosA=B/H=8/17
SecA=H/B=17/8
CosecA=H/P=17/15
Extra information=>
Other trigonometric formulas and Identities:
trigonometric formulas:
- Sin²θ+cos²θ=1
- sec²θ-tan²θ=1
- cosec²θ-cot²θ=1
Reciprocal Identities:
- Sinθ=1/cosecθ
- cosθ=1/secθ
- Tanθ=1/cotθ
Angle formulas:
- Sin(90-θ)=cosθ
- tan(90-θ)=cotθ
- cosec (90-θ)=secθ
- sec(90-θ)=cosecθ
- cot(90-θ)=tanθ
- cos(90-θ)=sinθ
Even odd identities:
- Sin(-θ)= -sinθ
- tan(-θ)= -tanθ
- Cos(-θ)=cosθ
Quotient identities:
- Tanθ=sinθ/cosθ
- Cotθ=cosθ/sinθ
Similar questions
Computer Science,
1 month ago
Hindi,
1 month ago
Math,
2 months ago
Math,
2 months ago
Biology,
8 months ago