Math, asked by yaseenmalik200511, 3 months ago

If, 15 cot A=8, then find the value of tan A?​

Answers

Answered by sandeepgurung245351
18

Answer:

Cot A=8/15

It means p=15

B=8

Tan A =15/8

Step-by-step explanation:

I THINK IT WILL HELP YOU

Answered by Flaunt
71

Given

We have given 15cotA= 8

To find

We have to find TanA

\sf\huge\bold{\underline{\underline{{Solution}}}}

15cotA= 8

CotA= 8/15

We know that cotθ= Base/perpendicular

So,CotA= 8/15

We have to find TanA ?

we know that Tanθ= perpendicular/base

Tan A =15/8

______________________________________________

Further solve and finding other trigonometric values:

Here, base is 8 & perpendicular is 15

By using Pythagoras theorem:

H²= B²+P²

H²= 8²+15²

H²= 64+225

H²= 289

H=√289

H=17

hence, hypotenuse is 17

SinA= P/H =15/17

CosA=B/H=8/17

SecA=H/B=17/8

CosecA=H/P=17/15

Extra information=>

Other trigonometric formulas and Identities:

trigonometric formulas:

  • Sin²θ+cos²θ=1
  • sec²θ-tan²θ=1
  • cosec²θ-cot²θ=1

Reciprocal Identities:

  • Sinθ=1/cosecθ
  • cosθ=1/secθ
  • Tanθ=1/cotθ

Angle formulas:

  • Sin(90-θ)=cosθ
  • tan(90-θ)=cotθ
  • cosec (90-θ)=secθ
  • sec(90-θ)=cosecθ
  • cot(90-θ)=tanθ
  • cos(90-θ)=sinθ

Even odd identities:

  • Sin(-θ)= -sinθ
  • tan(-θ)= -tanθ
  • Cos(-θ)=cosθ

Quotient identities:

  • Tanθ=sinθ/cosθ
  • Cotθ=cosθ/sinθ
Similar questions