If 15 tan^2 Q+ 4 sec ^2 Q= 23, then find the value of ( sec Q + cosec Q )^2- sin^2 Q
Answers
Solution :-
→ 15tan²Q + 4sec²Q = 23
using tan²A = (sec²A - 1) ,
→ 15( sec²Q -1) + 4sec²Q = 23
→ 15sec²Q + 4sec²Q - 15 = 23
→ 19sec²Q = 23 + 15
→ 19sec²Q = 38
→ sec²Q = 2
→ secQ = (√2/1) = Hypotenuse/Base.
So ,
→ Perpendicular = √(Hypotenuse² - Base²)
→ Perpendicular = √{(√2)² - 1²}
→ Perpendicular = √(2 - 1)
→ Perpendicular = √1 = 1 .
Therefore,
→ cosecQ = Hypotenuse / Perpendicular = √2/1 = √2.
→ sinQ = Perpendicular / Hypotenuse = 1/√2 .
Hence,
→ (secQ + cosecQ)² - sin²Q
→ (√2 + √2)² - (1/√2)²
→ (2√2)² - (1/2)
→ 8 - (1/2)
→ (15/2) (Ans.)
Question:-
If 15tan²Q + 4sec²Q = 23, find the value of (secQ + cosecQ)² - sin²Q
Formulas Used:-
- tan²Q + 1 = sec²Q
- (Base)² + (Perpendicular)² = (Hypotenuse)²
Answer:-
15tan²Q + 4sec²Q = 23
=> 15tan²Q + 4(tan²Q + 1) = 23
=> 15tan²Q + 4tan²Q + 4 = 23
=> 19tan²Q = 19
=> tan²Q = 1
=> tanQ = 1 = 1/1 = (Perpendicular) / (Base)
We are having the value of Perpendicular as 1 and Base as 1
So, (Base)² + (Perpendicular)² = (Hypotenuse)²
=> 1² + 1² = (Hypotenuse)²
=> (Hypotenuse)² = 2
=> Hypotenuse = √2
So,
secQ = (Hypotenuse) / (Base) = √2 / 1 = √2
cosecQ = (Hypotenuse) / (Perpendicular) = √2 / 1 = √2
sinQ = (Perpendicular) / (Hypotenuse) = 1/√2
So,
(secQ + cosecQ)² - sin²Q
=> ( √2 + √2 )² - (1/√2)²
=> (2√2)²- (1/2)
=> 8 - 1/2
=> 15/2