Math, asked by akshay242012, 10 months ago

if 15cotA=6 then sinA =?​

Answers

Answered by sweety6239
2

Answer:

sinA=5/√29

Step-by-step explanation:

cotA =6/15

cotA= 2/5

by using Pythagoras theorem

hypotenuse= √29

sinA= 5/√29

Answered by Brâiñlynêha
6

\huge\mathbb{SOLUTION:-}

\sf\implies 15 cotA=6 \\ \\ \sf\implies cot A=\frac{6}{15}

Now find the value of tanA

\sf\implies tan A=\frac{1}{cot A}\\ \\ \sf\implies tan A=\frac{1}{\frac{6}{15}}\\ \\ \sf\implies tan A=1\times \frac{15}{6}=\cancel{\frac{15}{6}}\\ \\ </p><p>\sf\implies tanA= \frac{5}{2}

The value of tanA =5/2

\boxed{\sf{\purple{tanA=\frac{perpendicular}{base}}}}

  • Perpendicular of triangle=5cm

  • base= 2cm

  • Now the hypotenuse

\sf\implies hypotenuse {}^{2}=base{}^{2}+perpendicular {}^{2}\\ \\ \sf\implies hypotenuse{}^{2}= (5){}^{2}+(2){}^{2}\\ \\ \sf\implies hypotenuse=\sqrt{25+4}\\ \\ \sf\implies hypotenuse=\sqrt{29}

  • Hypotenuse=√29

Now the value of sinA

\sf\implies{\blue{ sinA=\frac{perpendicular}{Hypotenuse}}}\\ \\ \sf\implies sinA=\frac{5}{\sqrt{29}}

\boxed{\sf{sinA=\frac{5}{\sqrt{29}}}}

Attachments:
Similar questions