Math, asked by RahatManiyar, 10 months ago

If 15x+17y=21 and 17x+15y=11, then find the value of x+y​

Answers

Answered by Anonymous
22

Answer:

If we multiply the first equation by 17 and the second one by 15, we get,

255x + 289y = 357 and 255x + 225y = 165

Now, subtract both the equations..

64y = 192

y = 3

Now we can find the value of x,

15x + 17(3) = 21

15x + 51 = 21

x = -30/15

x = -2

x + y = -2+ 3 = 1

Answered by BrainlyPopularman
56

GIVEN :

  \\  \:  \: { \huge{.}} \:  \: { \bold{15x + 17y = 21}} \\

  \\  \:  \: { \huge{.}} \:  \: { \bold{17x + 15y = 11}} \\

TO FIND :

  \\  \:  \: { \huge{.}} \:  \: { \bold{value \:  \: of \:  \: (x + y )= ?}} \\

SOLUTION :

• According to the first condition –

  \\  \implies { \bold{15x + 17y = 21}} \\

  \\  \implies { \bold{15x = 21 - 17y}} \\

  \\  \implies { \bold{x = \dfrac{1}{15}(21 - 17y) \:  \:  \:  \:  -  -  - eq.(1)}} \\

• According to the second condition –

  \\ \implies { \bold{17x + 15y = 11}} \\

• Using eq.(1) –

  \\ \implies { \bold{17 \left\{\dfrac{1}{15}(21 - 17y)  \right\} + 15y = 11}} \\

  \\ \implies { \bold{\dfrac{17}{15}(21 - 17y)   + 15y = 11}} \\

  \\ \implies { \bold{\dfrac{17 \times 21}{15} -\dfrac{17 \times 17y}{15}+ 15y = 11}} \\

  \\ \implies { \bold{\dfrac{357}{15} -\dfrac{289y}{15}+ 15y = 11}} \\

  \\ \implies { \bold{\dfrac{357}{15}  + \dfrac{225y - 289y}{15}= 11}} \\

  \\ \implies { \bold{ - \dfrac{64y}{15}= 11 - \dfrac{357}{15} }} \\

  \\ \implies { \bold{ - \dfrac{64y}{15}=  \dfrac{165 - 357}{15} }} \\

  \\ \implies { \bold{ - 64y=  - 192}} \\

  \\ \implies { \bold{ y=  \cancel\dfrac{192}{64}}} \\

  \\ \:  \dashrightarrow \:  \large { \boxed{ \bold{ y= 3}}} \\

• Put the value of 'y' in eq.(1) –

  \\  \implies { \bold{x = \dfrac{1}{15}(21 - 17 \times 3)}} \\

  \\  \implies { \bold{x = \dfrac{1}{15}(21 - 51)}} \\

  \\  \implies { \bold{x =  -  \cancel\dfrac{30}{15}}} \\

  \\  \implies \large{ \boxed { \bold{x =  - 2}}} \\

▪︎ Hence –

  \\  \implies { \bold{x + y=-2 + 3}} \\

  \\ \:  \dashrightarrow \:   \large{ \boxed{ \bold{x + y=-1}}} \\

Similar questions