If 15x + 17y = 23 & 17x + 15y = 41 then (5x+5y)=________.
Answers
EXPLANATION.
⇒ 15x + 17y = 23. - - - - - (1).
⇒ 17x + 15y = 41. - - - - - (2).
As we know that,
Whenever we see this type of linear equations where coefficients of x and y are interchanging with each other then first we adding both the equations then we subtracting both the equations, we get.
Adding both the equations, we get.
⇒ 15x + 17y = 23. - - - - - (1).
⇒ 17x + 15y = 41. - - - - - (2).
We get,
⇒ 32x + 32y = 64.
⇒ x + y = 2. - - - - - (3).
Subtracting both the equations, we get.
⇒ 15x + 17y = 23. - - - - - (1).
⇒ 17x + 15y = 41. - - - - - (2).
⇒ - - -
We get,
⇒ - 2x + 2y = - 18.
⇒ - x + y = - 9. - - - - - (4).
Now, we solving equation (3) and equation (4), we get.
Adding both the equations, we get.
⇒ x + y = 2. - - - - - (3).
⇒ - x + y = - 9. - - - - - (4).
We get,
⇒ 2y = - 7.
⇒ y = -7/2.
Put the value of y = -7/2 in equation (3), we get.
⇒ x + y = 2. - - - - - (3).
⇒ x + (-7/2) = 2.
⇒ x - 7/2 = 2.
⇒ x = 2 + 7/2.
⇒ x = (4 + 7)/(2).
⇒ x = 11/2.
Values of : x = 11/2 and y = -7/2.
To find : 5x + 5y.
⇒ 5x + 5y = 5(11/2) + 5(-7/2).
⇒ 5x + 5y = 55/2 - 35/2.
⇒ 5x + 5y = (55 - 35)/(2).
⇒ 5x + 5y = 20/2.
⇒ 5x + 5y = 10.
∴ The value of 5x + 5y = 10.
given
15x + 17y = 23 ———(1)
17x + 15y = 41 ———(2)
Now adding (1) & (2) we get
32x + 32 y =64
x + y =2
multiplying both sides by 5
5(x + y) =5×2
5x + 5y = 10