Math, asked by priyanka8771, 1 year ago

if 15x=π,prove that cos x cos 2x cos 3x cos 4x cos 5x cos6x cos7x=1/2^7

Answers

Answered by MaheswariS
5

\textbf{Given:}\;x=\frac{\pi}{15}

\textbf{To prove:}

cosx\;cos2x\;cos3x\;cos4x\;cos5x\;cos6x\;cos7x=\displaystyle\frac{1}{2^7}

\textbf{That is, to prove}

cos12^{\circ}\;cos24^{\circ}\;cos36^{\circ}\;cos48^{\circ}\;cos60^{\circ}\;cos72^{\circ}\;cos84^{\circ}=\displaystyle\frac{1}{2^7}

\text{Consider,}

cos12^{\circ}\;cos24^{\circ}\;cos36^{\circ}\;cos48^{\circ}\;cos60^{\circ}\;cos72^{\circ}\;cos84^{\circ}

=cos12^{\circ}\;cos24^{\circ}\;cos36^{\circ}\;cos48^{\circ}\displaystyle(\frac{1}{2})cos72^{\circ}\;cos84^{\circ}

=\displaystyle(\frac{1}{2})[cos48^{\circ}\;cos12^{\circ}\;cos72^{\circ}][\;cos36^{\circ}\;cos24^{\circ}\;cos84^{\circ}]

\text{We know that,}

\boxed{\bf\,cos(60-A)\;cosA\;cos(60+A)=\frac{1}{4}cos\,3A}}

=\displaystyle(\frac{1}{2})[\frac{1}{4}\;cos3(12^{\circ})][\frac{1}{4}\;cos3(24^{\circ})]

=\displaystyle(\frac{1}{2})[\frac{1}{4}\;cos36^{\circ}][\frac{1}{4}\;cos72^{\circ}]

=\displaystyle(\frac{1}{32})[cos36^{\circ}][cos72^{\circ}]

=\displaystyle(\frac{1}{32})[\frac{\sqrt{5}+1}{4}][\frac{\sqrt{5}-1}{4}]

=\displaystyle(\frac{1}{32})[\frac{(\sqrt{5})^2-1^2}{16}]

=\displaystyle(\frac{1}{32})[\frac{5-1}{16}]

=\displaystyle(\frac{1}{32})[\frac{4}{16}]

=\displaystyle(\frac{1}{32})[\frac{1}{4}]

=\displaystyle(\frac{1}{2^5})[\frac{1}{2^2}]

=\bf\displaystyle\frac{1}{2^7}

\therefore\bf\,cos12^{\circ}\;cos24^{\circ}\;cos36^{\circ}\;cos48^{\circ}\;cos60^{\circ}\;cos72^{\circ}\;cos84^{\circ}=\displaystyle\frac{1}{2^7}

Find more:

Prove that : 8 sin 20 sin 40 sin 80 = (3)^1/2

https://brainly.in/question/2394832

Answered by chowdhuryanimesh918
1

Answer:

if 15x=π,prove that cos x cos 2x cos 3x cos 4x cos 5x cos6x cos7x=1/2^7

Similar questions