if 16 cot A=12 then find the value of sinA+cosA/sinA-CosA
Answers
Answered by
5
ok..................
...
...
Attachments:

ayush628:
ans is 7
Answered by
3
cotA = 12 / 16
= 3/4 = base/perpendicuar
hypotenuse^2 = base^2 + perpendicular^2
h^2= 3^2 + 4^2
h^2 = 9+16
h^2 = 25
h = 5
sinA = p/h
= 4/5
cosA = b/h
= 3/5
sinA+cosA / sinA-cosA
(4/5+3/5) / (4/5-3/5)
7/5 / 2/5
7/2
= 3/4 = base/perpendicuar
hypotenuse^2 = base^2 + perpendicular^2
h^2= 3^2 + 4^2
h^2 = 9+16
h^2 = 25
h = 5
sinA = p/h
= 4/5
cosA = b/h
= 3/5
sinA+cosA / sinA-cosA
(4/5+3/5) / (4/5-3/5)
7/5 / 2/5
7/2
Similar questions