Math, asked by BrainlyHelper, 1 year ago

If 16 cot x = 12, then \frac{sinx-cosx}{sinx+cosx} equals
(a)\frac{1}{7}
(b)\frac{3}{7}
(c)\frac{2}{7}
(d) 0

Answers

Answered by nikitasingh79
59

SOLUTION :  

The correct option is  (a)= 1/7

Given : 16 cot x = 12

cot x = 12/16 = ¾  

cot x = 3/4

cot x = Base / perpendicular = 3/4

Base = 3 , perpendicular = 4  

In right angled ∆,  

Hypotenuse² = ( perpendicular)² + (Base)²

[By Pythagoras theorem]

Hypotenuse² = ( 4)² + 3²

Hypotenuse² = 16 + 9  = 25

Hypotenuse = 25

Hypotenuse = √25 = 45

perpendicular = 5

sin x = perpendicular/hypotenuse = 4/5

sin x = ⅘  

cos x = base/ hypotenuse = 3/5

The value of : sin x - cos x /  sin x + cos x  

= (⅘ - ⅗)/(⅘ + ⅗)

= [(4 - 3)/5]  /[ (4 + 3)/5 ]

= (⅕) / (7/5)

= ⅕ × 5/7  

sin x - cos x /  sin x + cos x  = 1/7  

Hence, the value of  sin x - cos x /  sin x + cos x  is 1/7 .

HOPE THIS ANSWER WILL HELP YOU…

Answered by MRSmartBoy
3

16 cot x = 12, then \frac{sinx-cosx}{sinx+cosx} equals

(a)\frac{1}{7}

(b)\frac{3}{7}

(c)\frac{2}{7}

(d) 0

Similar questions