Math, asked by shivam12343971, 1 year ago

if 17 cos A=8 find 15 cosec A -8 sec B​

Answers

Answered by GodVasuDev
46

cosA=8/17

then sin A = 15/17 (by Pythagoras

theorem)

cos B=15/17

15cosecA-8secB

15*1/sinA-8*1/cosB

15*17/15-8*17/8

17-17=0

plz follow.. If you like my answer.....

Answered by pinquancaro
49

Answer:

15 \csc A -8 \sec A=0

Step-by-step explanation:

Given : 17\cos A=8

To find : 15 \csc A -8 \sec A

Solution :

17\cos A=8

\cos A=\frac{8}{17}

We know, \sec A=\frac{1}{\cos A}

\sec A=\frac{1}{\frac{8}{17}}

\sec A=\frac{17}{8}

We know, \sin A=\sqrt{1-\cos^2 A}

\sin A=\sqrt{1-(\frac{8}{17})^2}

\sin A=\sqrt{\frac{17^2-8^2}{17^2}}

\sin A=\sqrt{\frac{225}{17^2}}

\sin A=\sqrt{(\frac{15}{17})^2}

\sin A=\frac{15}{17}

\csc A=\frac{1}{\sin A}

\csc A=\frac{1}{\frac{15}{17}}

\sec A=\frac{17}{15}

Substitute in the expression,

15 \csc A -8 \sec A=15\times\frac{17}{15}-8\times\frac{17}{8}

15 \csc A -8 \sec A=17-17

15 \csc A -8 \sec A=0

Similar questions