Math, asked by vkoushik9346, 1 year ago

if 180°<theta<270, sin theta =-3/5, then cos theta/2=

Answers

Answered by brunoconti
10

Answer:

Step-by-step explanation:

Attachments:

vkoushik9346: ca you give your WhatsApp number
Answered by talasilavijaya
1

Answer:

Step-by-step explanation:

Given the trigonometric ratio,

sin\theta =\dfrac{-3}{5}    

Using the trigonometric relation,

sin^{2} {\theta}+cos^2{\theta}=1

\implies cos^2{\theta}=1-sin^{2} {\theta}

                =1+\dfrac{9}{25}=\dfrac{25-9}{25} =\dfrac{16}{25}

\implies cos{\theta}=\sqrt{\dfrac{16}{25} }=\pm\dfrac{4}{5}

Given the condition, 180^{o} &lt; \theta &lt; 270  ^{o}

The angle θ lies in 3rd quadrant. So sinθ as well as cosθ are negative.

Therefore, cos{\theta}=-{4/}{5}

To find the value of θ/2, consider the trigonometric relation,

cos2\theta=2cos^2\theta-1

For θ/2, we can write the above relation as

cos\theta=2cos^2\dfrac{\theta}{2} -1

\implies -\dfrac{4}{5} =2cos^2\dfrac{\theta}{2} -1\implies 1-\dfrac{4}{5} =2cos^2\dfrac{\theta}{2}

\implies 2cos^2\dfrac{\theta}{2}=\dfrac{1}{5} \implies cos^2\dfrac{\theta}{2}=\dfrac{1}{5} \times \dfrac{1}{2} =\dfrac{1}{10}

\implies cos\dfrac{\theta}{2}=\pm\dfrac{1}{\sqrt{10} }

For θ,  180^{o} &lt; \theta &lt; 270  ^{o} then for θ/2, 90^{o} &lt; \dfrac{\theta}{2} &lt; 135  ^{o}.

Therefore, the angle θ lies in 2nd quadrant, therefore cosθ is negative.

Therefore, the value of cos\dfrac{\theta}{2}=\dfrac{1}{\sqrt{10} }.    

Similar questions