Math, asked by purvighna6300, 3 months ago

If 180° <theta<270°, cot theta = 4/3, then sin theta/ 2 =​

Answers

Answered by ujwal9152
1

sorry for the late

the answer is minus 3 by 5

hope it's helpful

Attachments:
Answered by payalchatterje
0

Answer:

Required value of \frac{1}{ \sqrt{10} }  \:  \: or \:  \:  \frac{3}{ \sqrt{10} }

Step-by-step explanation:

Here given, \cot(\theta)  =  \frac{4}{3}

We know,

 \cot(\theta)  =  \frac{ \cos(\theta) }{ \sin(\theta) }  =  \frac{ \sqrt{1 -  {sin}^{2}\theta } }{ \sin(\theta) }

Let, \sin(\theta)  = x

So, \frac{ \sqrt{1 -  {x}^{2} } }{x}  =  \frac{4}{3}

We are taking square in both side,

 \frac{1 -  {x}^{2} }{ {x}^{2} }  =  \frac{16}{9}

By cross multiplication,

9 - 9 {x}^{2}   = 16 {x}^{2}

16 {x}^{2}  + 9 {x}^{2}  = 9

25 {x}^{2}  = 9

 {x}^{2}  =  \frac{9}{25}

x =  \frac{3}{5}

So, \sin(\theta)  =  \frac{3}{5}

Again we know,

 \sin(\theta)  = 2 \sin( \frac{\theta}{2} )  \cos( \frac{\theta}{2} )  = 2 \sin( \frac{\theta}{2} )  \sqrt{1 -  {sin}^{2} \frac{\theta}{2}  }

Let, \sin( \frac{\theta}{2} )  = y

So,2y \sqrt{1 -  {y}^{2} }  =  \frac{3}{5}

We are taking square in both side,

4 {y}^{2} (1 -  {y}^{2} ) =  \frac{9}{25}

By cross multiplication,

100 {y}^{4}  - 100 {y}^{2}   + 9 = 0

Let, {y}^{2}  =  p

Now,

100 {p}^{2}  - 100p + 9 = 0

By Sridhar Acharya rule,

p =  \frac{9}{10}

or p =  \frac{1}{10}

Therefore,

 {y}^{2}  = p =  \frac{1}{10 }  \\ y =  \frac{1}{ \sqrt{10} }

and

 {y}^{2}  = p =  \frac{9}{10}  \\ y =  \frac{3}{ \sqrt{10} }

 \sin( \frac{\theta}{2} )  =  \frac{1}{ \sqrt{10} }  \:  \: or \:  \:  \frac{3}{ \sqrt{10} }

Similar questions