Math, asked by prashantmatade1995, 4 days ago

if 19th term is 52 and 38th term is 128 in A.P. then find first 36 term sum​

Answers

Answered by amansharma264
3

EXPLANATION.

19th term = 52.

38th term = 128.

As we know that,

Formula of :

General term of an A.P.

⇒ Tₙ = a + (n - 1)d.

Using this formula in the equation, we get.

⇒ T₁₉ = 52.

⇒ T₁₉ = a + (19 - 1)d.

⇒ T₁₉ = a + 18d.

⇒ a + 18d = 52. - - - - - (1).

⇒ T₃₈ = 128.

⇒ T₃₈ = a + (38 - 1)d.

⇒ T₃₈ = a + 37d.

⇒ a + 37d = 128. - - - - - (2).

From equation (!) and (2), we get.

Subtract both equations, we get.

⇒ a + 18d = 52. - - - - - (1).

⇒ a + 37d = 128. - - - - - (2).

⇒ -   -          -

We get,

⇒ - 19d = - 76.

⇒ 19d = 76.

⇒ d = 4.

Put the value of d = 4 in equation (1), we get.

⇒ a + 18d = 52.

⇒ a + 18(4) = 52.

⇒ a + 72 = 52.

⇒ a = 52 - 72.

⇒ a = - 20.

First term = a = - 20.

Common difference = d = b - a = 4.

To find : Sum of first 36 term.

As we know that,

Formula of :

⇒ Sₙ = n/2[2a + (n - 1)d].

Using this formula in the equation, we get.

⇒ S₃₆ = 36/2[2(-20) + (36 - 1)(4)].

⇒ S₃₆ = 18[- 40 + (35)(4)].

⇒ S₃₆ = 18[- 40 + 140].

⇒ S₃₆ = 18 x 100.

S₃₆ = 1800.

Similar questions