if 1st 2nd and last term of an A.P. is a, b and c respectively prove that the sum is (a+c) (b+c-2a) / 2(b-a)
Answers
Answered by
3
here
first term=a,
common difference (d)=b-a
Tn=c,
a+(n-1)d=c,
then
(n-1)d=c-a,
(n-1)=(c-a)/d,
then
n= (c-a)/d + 1,
n=(c-a)/(b-a) + 1,
n=[c-a+b-a]/(b-a),
n=(b+c-2a)/(b-a),
therefore
Sum=(b+c-2a)/[2(b-a)] × [2a+c-a],
Sum =(b+c-2a)/2(b-a) ×(a+c)
Similar questions