Math, asked by imabhisheksingh56, 6 months ago

If (1x-5) (x+3) =2x²+x+a, then the value of a is ​

Answers

Answered by spacelover123
7

Question

Find the value of 'a' in this equation ⇒ (1x - 5) (x + 3) = 2x² + x + a

________________________________

Answer

Let's find the value of 'a' step-by-step.

(1x - 5) (x + 3) = 2x² + x + a

Step 1: Multiply the binomial to the binomial in the LHS.

⇒ (1x - 5) (x + 3) = 2x² + x + a

⇒ 1x (x + 3) - 5 (x + 3) = 2x² + x + a

⇒ 1x (x) + 1x (3) - 5 (x) - 5 (3) = 2x² + x + a

⇒ x² + 3x - 5x - 15 = 2x² + x + a

Step 2: Simplify the LHS.

⇒ x² + 3x - 5x - 15 = 2x² + x + a

⇒ x² - 2x - 15 = 2x² + x + a

Step 3: Add 2x to both sides of the equation.

⇒ x² - 2x - 15 + 2x = 2x² + x + a + 2x

⇒ x² - 15 = 2x² + 3x + a

Step 4: Subtract x² from both sides of the equation.

⇒ x² - 15 - x² = 2x² + 3x + a - x²

⇒ -15 = x² + 3x + a

Step 5: Flip the equation.

⇒ -15 = x² + 3x + a

⇒ x² + 3x + a = -15

Step 6: Subtract x² from both sides of the equation.

⇒ x² + 3x + a - x² = -15 - x²

⇒ 3x + a = -15 - x²

Step 7: Subtract 3x from both sides of the equation.

⇒ 3x + a - 3x = -15 - x² - 3x

⇒ a = -15 - x² - 3x

∴ The value of a is -15 - x² - 3x in the equation (1x - 5) (x + 3) = 2x² + x + a

________________________________

Similar questions