If (1x-5) (x+3) =2x²+x+a, then the value of a is
Answers
Question
Find the value of 'a' in this equation ⇒ (1x - 5) (x + 3) = 2x² + x + a
________________________________
Answer
Let's find the value of 'a' step-by-step.
(1x - 5) (x + 3) = 2x² + x + a
Step 1: Multiply the binomial to the binomial in the LHS.
⇒ (1x - 5) (x + 3) = 2x² + x + a
⇒ 1x (x + 3) - 5 (x + 3) = 2x² + x + a
⇒ 1x (x) + 1x (3) - 5 (x) - 5 (3) = 2x² + x + a
⇒ x² + 3x - 5x - 15 = 2x² + x + a
Step 2: Simplify the LHS.
⇒ x² + 3x - 5x - 15 = 2x² + x + a
⇒ x² - 2x - 15 = 2x² + x + a
Step 3: Add 2x to both sides of the equation.
⇒ x² - 2x - 15 + 2x = 2x² + x + a + 2x
⇒ x² - 15 = 2x² + 3x + a
Step 4: Subtract x² from both sides of the equation.
⇒ x² - 15 - x² = 2x² + 3x + a - x²
⇒ -15 = x² + 3x + a
Step 5: Flip the equation.
⇒ -15 = x² + 3x + a
⇒ x² + 3x + a = -15
Step 6: Subtract x² from both sides of the equation.
⇒ x² + 3x + a - x² = -15 - x²
⇒ 3x + a = -15 - x²
Step 7: Subtract 3x from both sides of the equation.
⇒ 3x + a - 3x = -15 - x² - 3x
⇒ a = -15 - x² - 3x
∴ The value of a is -15 - x² - 3x in the equation (1x - 5) (x + 3) = 2x² + x + a
________________________________