Math, asked by mohitkhanwale3169, 10 months ago

If (×)2 + (1/(×)2 =27 find the value if (×)4 + (1/(×)4.

Answers

Answered by Brâiñlynêha
0

\huge\mathtt{\underline{\underline{\purple{SOLUTION:-}}}}

it's given that the value of

\sf\leadsto x{}^{2}+\frac{1}{x{}^{2}}=27

To find:-

\sf\implies x{}^{4}+\frac{1}{x{}^{4}}

\sf{\underline{\red{Identity\:used:-}}}

\sf (x+\frac{1}{x}){}^{2}=x{}^{2}+\frac{1}{x{}^{2}}+2\times x+\frac{1}{x}\\ \\ \sf\implies x{}^{2}+\frac{1}{x{}^{2}}+2

  • The process I used in this question
  • 1st square both side and then we get something
  • then solve our question it's too easy for solve .

Step by step explanation:-

\large\sf\underline{\underline{\purple{According\:to\: Question:-}}}

\sf x{}^{2}+\frac{1}{x{}^{2}}=27\\ \\ \sf\implies squaring\: both\:sides\\ \\ \sf\leadsto (x{}^{2}+\frac{1}{x{}^{2}}){}^{2}=(27){}^{2}\\ \\ \sf\leadsto x{}^{4}+\frac{1}{x{}^{4}}+2=729\\ \\ \sf\leadsto x{}^{4}+\frac{1}{x{}^{4}}=729-2\\ \\ \sf\implies x{}^{4}+\frac{1}{x{}^{4}}=727

The value of :-

\sf{\blue{x{}^{4}+\frac{1}{x{}^{4}}=727}}

#BAL

#Answerwithquality

Similar questions