Math, asked by deepjashana02, 1 year ago

If 2,1 / 2 are the zeros of px^2+5x+r prove that p = r

Answers

Answered by HimanshuR
13

p(x) = px {}^{2}  + 5x + r
If 2 is the zero of p(x). So,
p(2)=0
p  \times 2 {}^{2}  + 5 \times 2 + r = 0 \\ 4p + 10 + r = 0 \\ 4p + r =  - 10 \\ r =  - 10 - 4p \:  \: ....(i)
If 1/2 is the zero of p(x). So,
p(1/2)=0
p( \frac{1}{2} ) {}^{2}  + 5  \times  \frac{1}{2}  + r = 0 \\  \frac{p}{4}  +  \frac{5}{2}  + r = 0  \\  \frac{p}{4}  +  r =  \frac{ - 5}{2}  \:  \: .....(ii)
From equation (i),
 \frac{p}{4}   - 10 - 4p =  \frac{ - 5}{2}  \\  \frac{p - 16p}{4}  =  \frac{ - 5}{2}  + 10 \\  \frac{ - 15p}{4}  =  \frac{ - 5 + 20}{2}  \\ p =  \frac{15 \times 4}{2 \times  - 15}  \\ p =  - 2
r =  - 10 - 4p \\  =  - 10 - 4 \times  - 2 \\  =  - 10 + 8 \\  =   - 2
So, p=r= -2
----proved----

Similar questions