Math, asked by talentedgamer808, 11 months ago

If [2/(1+√3)]+ (1/2√3)=√3 p-4q, then what is the values of p and q??

Reply fast​

Answers

Answered by Anonymous
12

\large\underline{ \underline{ \green{ \bold{solution}}}}  =  >

</p><p>\frac { 2 } { 1 + \sqrt { 3 } } + \frac { 1 } { 2 \sqrt { 3 } } = \sqrt { 3 } p - 4 q

\frac{2\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}+\frac{1}{2\sqrt{3}}=\sqrt{3}p-4q

 \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}

-1+\sqrt{3}+\frac{\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}=\sqrt{3}p-4q

-1+\frac{7}{6}\sqrt{3}=\sqrt{3}p-4q

\sqrt{3}p-4q=-1+\frac{7}{6}\sqrt{3}

\frac{-4q}{-4}=\frac{-\sqrt{3}p+\frac{7\sqrt{3}}{6}-1}{-4}

q=\frac{-\sqrt{3}p+\frac{7\sqrt{3}}{6}-1}{-4}

</p><p>q=\frac{\sqrt{3}p}{4}-\frac{7\sqrt{3}}{24}+\frac{1}{4}</p><p>

p =  \frac{4 \sqrt{3}q }{3}  - \frac{ \sqrt{3} }{3}  +  \frac{7}{6}

Answered by ashishsingh822101
14

Answer:

Step-by-step explanation:

I hope its helps you

Attachments:
Similar questions