If √2 = 1.4 and √3 = 1.7, find the value of 1/(√3 – √2)
Answers
If √2 = 1.4 and √3 = 1.7, the value of 1/(√3 – √2) is 3.1 .
• Given,
√2 = 1.4, and √3 = 1.7
• Therefore,
1 / (√3 - √2) = (√3 + √2) / { (√3 - √2) (√3 + √2) }
[ • Here, the denominator is an irrational number. So, it has to be first converted into a rational number.
• For doing so, the denominator is multiplied with itself by inversing the sign in between.
• Since the denominator is multiplied by (√3 + √2), the numerator must also be multiplied by the same term in order to keep the original expression unchanged.]
Or, 1 / (√3 – √2) = (√3 + √2) / {(√3)² - (√2)² }
[ Applying a² - b² = (a - b) (a + b) in the denominator ]
Or, 1 / (√3 – √2) = (√3 + √2) / (3 - 2)
Or, 1 / (√3 – √2) = (√3 + √2) / 1
Or, 1 / (√3 – √2) = (√3 + √2)
Now, putting the values of √3 and √2, we get,
1 / (√3 – √2) = 1.7 + 1.4 = 3.1
Therefore, 1 / (√3 - √2) = 3.1
1/(√3 – √2) = 3.1
Explanation:
Given, √2 = 1.4, and √3 = 1.7
1 / (√3 - √2)
Multiplying both numerator and denominator with (√3 + √2), we get:
1 / (√3 - √2) = (√3 + √2) / { (√3 - √2) (√3 + √2) }
= (√3 + √2) / {(√3)² - (√2)² }
= (√3 + √2) / (3 - 2)
= (√3 + √2) / 1
So we get 1 / (√3 – √2) = √3 + √2
Substituting the given values, we get:
1 / (√3 – √2) = √3 + √2 = 1.7 + 1.4 = 3.1