Math, asked by ItxAttitude, 19 days ago

if√2=1.414,√3=1.732, then find the value of√6by√3-√2

Answers

Answered by EmperorSoul
3

 \large   \underline{\underline{\rm{ \bull   \: Solution : -  }}}

➻ The given values are as follows :

 \rm{ \mapsto \: \sqrt{2} =1.414 }

 \rm{ \mapsto \: \sqrt{3} =1.732}

➻ What we have to find out :

We have to find the value of

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ \sqrt{3} -  \sqrt{2}  } }

 \overline{\rule{ 200pt}{2pt}}

 \large   \underline{\underline{\rm{ \bull   \:Assume \:  that   : -  }}}

 \rm \leadsto{Let \: t=  \dfrac{ \sqrt{6} }{ \sqrt{3}  -  \sqrt{2} } }

 \overline{\rule{ 200pt}{2pt}}

 \large   \underline{\underline{\rm{ \bull   \: Step  \: by  \: step \:  solution : -  }}}

 \large   \underline{\underline{\rm{ \bull  \: Step   \:1: -  }}}

➻ To make denominator an integer we have to first rationalize the given quantity .

➻On rationalizing, therefore we get:

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6} }{ \sqrt{3}  -  \sqrt{2} } \times  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +   \sqrt{2}  }  }

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{ (\sqrt{3}   -    \sqrt{2}  ) \: ( \sqrt{3} +  \sqrt{2}  )}  }

 \large   \underline{\underline{\rm{ \bull   We\:know \:  that   : -  }}}

 \rm \implies \: {   {a}^{2} -  {b}^{2}  = (a + b)(a - b)  }

 \large   \underline{\underline{\rm{ \bull  \: Step   \:2: -  }}}

➻ To get the answer use this identity and the given values

➻ By using this identity for the above equation we get :-

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{( { \sqrt{3} \: ) }^{2}  -  {( \sqrt{2}  \: )}^{2} }  }

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{ { 3 - 2 }} }

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{ { 1}} }

 \rm \mapsto{\: t=  \sqrt{6} \: ( \sqrt{3} +  \sqrt{2} )  }

 \rm \mapsto{\: t= 3 \sqrt{2}  + 2 \sqrt{3}  }

 \large   \underline{\underline{\rm{ \bull  \: Step   \:3: -  }}}

➻ Substitute the obtained values

➻Therefore by substituting the given values we get :-

 \rm \longrightarrow{\: t = 3 \times 1.414 + 2 \times 1.732  }

 \rm \longrightarrow{\: t = 4.242 + 3.464  }

 \rm  \implies{\approx 7.706  }

 \large   \underline{\underline{\rm{ \bull   Therefore   : -  }}}

➻ ❛❛ The value of

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ \sqrt{3} -  \sqrt{2}  \: } \: is }

 \bf  \implies{\approx 7.706  }❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

 \large   \underline{\underline{\rm{ \bull   \: Learn \: More : -  }}}

➻ The method of converting the surd denominator into an integer by multiplying the denominator and the numerator by the conjugate of the denominator is known as Rationalization of the expression.

➻ The above identity is given by:

 \rm \implies \: {   {a}^{2} -  {b}^{2}  = (a + b)(a - b)  }

 \\ {\underline{\rule{300pt}{9pt}}}

 \large   \underline{\underline{\rm{ \bull   \: Note : -  }}}

➻ Let's check the obtained answer is correct or not by directly substituting the given values and then further solving the fraction to get the required value .

 \rm{  \mapsto \:\dfrac{ \sqrt{6} }{ \sqrt{3} -  \sqrt{2}  \: } \:  }

➻ Now by substituting the given values we get :

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ 1.732- 1.414  } }

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ 0.318  } }

➻ As value of √6 is 2.449 So ,

 \rm{  \longrightarrow \:\dfrac{2.449}{ 0.318  } }

 \bf  \implies{\approx 7.701  }

Answered by nihasrajgone2005
0

Answer:

2

=1.414,

3

=1.732

3

3

−2

2

4

+

3

3

+2

2

3

3∗1.732−2∗1.414

4

+

3∗1.732+2∗1.414

3

5.196−2.828

4

+

5.196+2.828

3

2.368

4

+

8.024

3

⇒1.960+0.373=2.063

please drop some ❤️❤️❤️

Step-by-step explanation:

please f-o-l-l-o-w m-e bro please

Attachments:
Similar questions