Math, asked by naswafnaswaf, 4 days ago

if√2=1.414,√3=1.732, then find the value of√6by√3-√2




i want dis answer

Answers

Answered by user0888
54

\large\text{$\boxed{\bold{[Topic:\ Rationalization\ of\ the\ denominator]}}$}

Rationalization is effective in divisions. Let's take we are to calculate the value of \large\text{$\dfrac{1}{\sqrt{2}}$}. If we only know that \large\text{$\sqrt{2}\approx1.414$}, it will consume an amount of time.

\large\text{$\cdots\longrightarrow\dfrac{1}{\sqrt{2}}\approx\dfrac{1}{1.414}=?$}

But, since we know the definition of the square root, we can evaluate it faster. The method is called rationalization of the denominator.

\large\text{$\cdots\longrightarrow\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\approx\dfrac{1.414}{2}=0.707$}

The above is a method for a rationalization for one irrational number. Now, to rationalize more terms, we use a polynomial identity.

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}\bold{(a+b)(a-b)=a^{2}-b^{2}}\end{aligned}}$}

This will square each term, by definition of square root, the radicands are the result.

\large\text{$\boxed{\bold{[Step\ 1.]}}$}

\large\text{$\cdots\longrightarrow\text{(Given number)}=\dfrac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}$}

As we see here the denominator is a difference of two irrational numbers. To resolve it, we simply multiply '1' to it.

if the non-zero denominator and numerator are equal the number is 1.

As we know, 1 is a multiplicative identity.

\large\text{$\cdots\longrightarrow\text{(Given number)}=\dfrac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}\times\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$}

\large\text{$\boxed{\bold{[Step\ 2.]}}$}

Now we are given a polynomial identity of difference.

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}\bold{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})=(\sqrt{3})^{2}-(\sqrt{2})^{2}}\end{aligned}}$}

So, -

\large\text{$\cdots\longrightarrow\text{(Given number)}=\dfrac{\sqrt{6}(\sqrt{3}+\sqrt{2})}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$}

\large\text{$\boxed{\bold{[Step\ 3.]}}$}

\large\text{$\cdots\longrightarrow\text{(Given number)}=\sqrt{6}(\sqrt{3}+\sqrt{2})$}

\large\text{$\cdots\longrightarrow\text{(Given number)}=3\sqrt{2}+2\sqrt{3}$}

Finally, the given approximation of irrational numbers gives it.

\large\text{$\cdots\longrightarrow\text{(Given number)}\approx3\times1.414+2\times1.732$}

\large\text{$\cdots\longrightarrow\text{(Given number)}\approx4.242+3.464$}

\large\text{$\cdots\longrightarrow\text{(Given number)}\approx7.706$}

\large\text{$\boxed{\bold{[Final\ answer]}}$}

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}\bold{\dfrac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}\approx7.706}\end{aligned}}$}

Answered by Anonymous
90

 \large   \underline{\underline{\rm{ \bull   \: Solution : -  }}}

➻ The given values are as follows :

 \rm{ \mapsto \: \sqrt{2} =1.414 }

 \rm{ \mapsto \: \sqrt{3} =1.732}

➻ What we have to find out :

We have to find the value of

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ \sqrt{3} -  \sqrt{2}  } }

 \overline{\rule{ 200pt}{2pt}}

 \large   \underline{\underline{\rm{ \bull   \:Assume \:  that   : -  }}}

 \rm \leadsto{Let \: t=  \dfrac{ \sqrt{6} }{ \sqrt{3}  -  \sqrt{2} } }

 \overline{\rule{ 200pt}{2pt}}

 \large   \underline{\underline{\rm{ \bull   \: Step  \: by  \: step \:  solution : -  }}}

 \large   \underline{\underline{\rm{ \bull  \: Step   \:1: -  }}}

➻ To make denominator an integer we have to first rationalize the given quantity .

➻On rationalizing, therefore we get:

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6} }{ \sqrt{3}  -  \sqrt{2} } \times  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +   \sqrt{2}  }  }

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{ (\sqrt{3}   -    \sqrt{2}  ) \: ( \sqrt{3} +  \sqrt{2}  )}  }

 \large   \underline{\underline{\rm{ \bull   We\:know \:  that   : -  }}}

 \rm \implies \: {   {a}^{2} -  {b}^{2}  = (a + b)(a - b)  }

 \large   \underline{\underline{\rm{ \bull  \: Step   \:2: -  }}}

➻ To get the answer use this identity and the given values

➻ By using this identity for the above equation we get :-

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{( { \sqrt{3} \: ) }^{2}  -  {( \sqrt{2}  \: )}^{2} }  }

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{ { 3 - 2 }} }

 \rm \mapsto{\: t=  \dfrac{ \sqrt{6}   \: (\sqrt{3} +  \sqrt{2})  }{ { 1}} }

 \rm \mapsto{\: t=  \sqrt{6} \: ( \sqrt{3} +  \sqrt{2} )  }

 \rm \mapsto{\: t= 3 \sqrt{2}  + 2 \sqrt{3}  }

 \large   \underline{\underline{\rm{ \bull  \: Step   \:3: -  }}}

➻ Substitute the obtained values

➻Therefore by substituting the given values we get :-

 \rm \longrightarrow{\: t = 3 \times 1.414 + 2 \times 1.732  }

 \rm \longrightarrow{\: t = 4.242 + 3.464  }

 \rm  \implies{\approx 7.706  }

 \large   \underline{\underline{\rm{ \bull   Therefore   : -  }}}

➻ ❛❛ The value of

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ \sqrt{3} -  \sqrt{2}  \: } \: is }

 \bf  \implies{\approx 7.706  }❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

 \large   \underline{\underline{\rm{ \bull   \: Learn \: More : -  }}}

➻ The method of converting the surd denominator into an integer by multiplying the denominator and the numerator by the conjugate of the denominator is known as Rationalization of the expression.

➻ The above identity is given by:

 \rm \implies \: {   {a}^{2} -  {b}^{2}  = (a + b)(a - b)  }

 \\ {\underline{\rule{300pt}{9pt}}}

 \large   \underline{\underline{\rm{ \bull   \: Note : -  }}}

➻ Let's check the obtained answer is correct or not by directly substituting the given values and then further solving the fraction to get the required value .

 \rm{  \mapsto \:\dfrac{ \sqrt{6} }{ \sqrt{3} -  \sqrt{2}  \: } \:  }

➻ Now by substituting the given values we get :

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ 1.732- 1.414  } }

 \rm{  \longrightarrow \:\dfrac{ \sqrt{6} }{ 0.318  } }

➻ As value of √6 is 2.449 So ,

 \rm{  \longrightarrow \:\dfrac{2.449}{ 0.318  } }

 \bf  \implies{\approx 7.701  }

Similar questions