Math, asked by bhav1708, 1 month ago

If √2 = 1.4142…, then find the value of: √
√2−1
√2+1

Answers

Answered by Salmonpanna2022
11

Step-by-step explanation:

Let's solve the problem,

we have,

 \sqrt{ \frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1} }  \\  \\

The denominator is √2+1. Multiplying the numerator and denomination by √2-1, we get

⟹ \sqrt{ \frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 } }  \\  \\

⟹ \sqrt{ \frac{( \sqrt{2} - 1 {)}^{2}  }{( \sqrt{2}   +  1)( \sqrt{2} - 1) } }  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

⟹ \sqrt{ \frac{( \sqrt{2} - 1 {)}^{2}  }{( \sqrt{2} {)}^{2}   -  {(1)}^{2} } }  \\  \\

⟹ \sqrt{ \frac{( \sqrt{2}  - 1 {)}^{2} }{2 - 1} }  \\  \\

⟹ \sqrt{ \frac{( \sqrt{2} - 1 {)}^{2}  }{1} }  \\  \\

⟹ \sqrt{2 }  - 1 \\  \\

⟹1.4142 - 1 \\  \\

⟹0.4142 \:  \: Ans. \\  \\

  • I hope it's help you...☺
Answered by MagicalLove
45

Step-by-step explanation:

 \huge \underline{ \sf{ \red{Answer:-}}}

Given :

  • √2 = 1.4142

Solution:

   \green{\huge \longrightarrow \:    \sqrt{ \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 } }}

\green{\huge \longrightarrow \:  \sqrt{\frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 } }}

\green{\huge \longrightarrow \:  \sqrt{\frac{ {( \sqrt{2} - 1) }^{2} }{ {( \sqrt{2} )}^{2} -  {(1)}^{2}  } }}

\green{\huge \longrightarrow \: \frac{ \sqrt{2} - 1 }{1} }

\green{\huge \longrightarrow \:1.4142 - 1}

\green{\huge \longrightarrow \:0.4142}

Formula Used:

  • (a-b)²=(a+b)(a-b)

Similar questions