Math, asked by shriharsh273, 11 months ago

if 2+2✓3/2-✓3=a+b✓3 find the value of a and b​

Answers

Answered by Anonymous
5

  \sf given :  -  \frac{2 + 2 \sqrt{3} }{2 -  \sqrt{3} }  = a + b \sqrt{3}  \\  \\  \sf first \: we \: have \: to \: rationalize \: the  \\ \sf denominator \: of \:  \frac{2 + 2 \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \sf =  \frac{2 + 2 \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2  +   \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  =  \frac{(2 + 2 \sqrt{3})(2 +  \sqrt{3} ) }{(2 -  \sqrt{3})(2 +  \sqrt{3})  }  \\  \\  \sf =  \frac{2(2  +  \sqrt{3} ) + 2 \sqrt{3}(2 +  \sqrt{3})  }{( {2)}^{2} - ( { \sqrt{3}) }^{2}  }  \\  \\  \sf =  \frac{4 + 2 \sqrt{3}  + 4 \sqrt{3} + 6 }{4 - 3}  \\  \\  \sf =  \boxed{10 + 6 \sqrt{3}  } -  -   - - (i)\\  \\  \sf comparing \: (i) \: with \: a + b \sqrt{3}    \\ \sf    \\ =  > 10 + 6  \cancel{\sqrt{3}}  = a + b  \cancel{\sqrt{3} }

hence, a = 10 and b = 6

Answered by Anonymous
8

\huge\underline\textbf{Answer:-}

Refer the given attachment:-

Attachments:
Similar questions