If (2.3)ˣ = (0.23)ⁿ= 1000 the find the value of 1/x-1/y
Answers
Answered by
4
Given,
(2.3)^x=(0.23)^y=1000
We have,
(2.3)^x=1000
Applying log on both sides we get,
log(2.3)^x=log1000
xlog(23/10)=3
log(23/10)=3/x....................................1
and,
(0.23)^y=1000
Applying log on both sides we get,
log(0.23)^y=log1000
ylog(23/100)=3
log(23/100)=3/y...............................2
By eq1 - eq2 we get,
log(23/10)-log(23/100)=3/x-3/y
log{(23/10)/(23/100)}=3(1/x-1/y)
log10=3(1/x-1/y)
1/3=1/x-1/y
1/x-1/y=1/3
Hence value of 1/x-1/y=1/3.
(2.3)^x=(0.23)^y=1000
We have,
(2.3)^x=1000
Applying log on both sides we get,
log(2.3)^x=log1000
xlog(23/10)=3
log(23/10)=3/x....................................1
and,
(0.23)^y=1000
Applying log on both sides we get,
log(0.23)^y=log1000
ylog(23/100)=3
log(23/100)=3/y...............................2
By eq1 - eq2 we get,
log(23/10)-log(23/100)=3/x-3/y
log{(23/10)/(23/100)}=3(1/x-1/y)
log10=3(1/x-1/y)
1/3=1/x-1/y
1/x-1/y=1/3
Hence value of 1/x-1/y=1/3.
Answered by
0
Step-by-step explanation:
x(log.23+log10) = y log .23 =log 10³=3
1/x = log.23 +1 /3
1/y = log.23/3
let log.23 = a
1/x -1/y = (a+1)/3-(a/3)= (a+1-a)/3 =1/3
Similar questions