Math, asked by leelarauthan13t, 3 months ago

if 2+√3/ 2-√3 = a-b√3 then find a and b​

Answers

Answered by Anonymous
3

Given

 \sf \to \:  \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  = a - b \sqrt{3}

To Find the value of a and b

So ,Take

 \sf \to \:  \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} }

Rationalize The Denominator

 \sf \to \:  \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} } \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

We Know that

 \sf \to \: (a + b)(a + b) = (a + b) {}^{2}

 \sf \to \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

We get

 \sf \to \:  \dfrac{(2 +  \sqrt{3}) {}^{2}  }{( {2}^{2}  - ( \sqrt{3}) {}^{2}  )}

Using this identities

 \sf \to \: (a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

we get

 \sf \to \:  \dfrac{ {2}^{2} + ( \sqrt{3} ) {}^{2}  - 2 \times 2 \times  \sqrt{3}  }{4 - 3}

 \sf \to \:  \dfrac{4 + 3 - 4 \sqrt{3} }{1}

 \sf \to \: 7 - 4 \sqrt{3}

By comparing with

 \sf \to \: a - b \sqrt{3}

we get

 \sf \to \: a = 7 \:  \: and \: b = 4

Answer

\sf \to \: a = 7 \:  \: and \: b = 4

Similar questions