if 2 − 3 = + 2 ℎ =?
Answers
H = -1/2
Hope it will help you.
Step-by-step explanation:
points be
A
(
3
,
2
)
A(3,2)
B
(
3
,
−
2
)
B(3,−2)
C
(
0
,
h
)
C(0,h)
T
h
e
d
i
s
t
a
n
c
e
b
e
t
w
e
e
n
A
a
n
d
B
ThedistancebetweenAandB
=
√
(
x
2
−
x
1
)
²
+
(
y
2
−
y
1
)
²
=√(x2−x1)²+(y2−y1)²
=
√
(
3
−
3
)
²
+
(
−
2
−
2
)
²
=√(3−3)²+(−2−2)²
=
√
0
+
16
=√0+16
=
√
(
16
)
=√(16)
=
4
=4
T
h
e
d
i
s
t
a
n
c
e
b
e
t
w
e
e
n
B
a
n
d
C
ThedistancebetweenBandC
=
√
(
x
2
−
x
1
)
²
+
(
y
2
−
y
1
)
²
=√(x2−x1)²+(y2−y1)²
=
√
(
0
−
3
)
²
+
(
−
h
−
2
)
²
=√(0−3)²+(−h−2)²
=
√
9
+
h
²
+
4
+
4
h
=√9+h²+4+4h
=
√
13
+
h
²
+
4
h
=√13+h²+4h
The ,distance between
C
a
n
d
A
CandA
=
√
(
x
2
−
x
1
)
²
+
(
y
2
−
y
1
)
²
=√(x2−x1)²+(y2−y1)²
=
√
(
0
−
3
)
²
+
(
h
−
2
)
²
=√(0−3)²+(h−2)²
=
√
9
+
h
²
+
4
−
4
h
=√9+h²+4−4h
=
√
13
+
h
²
−
4
h
=√13+h²−4h
as it is a equilateral triangle
A
B
=
B
C
=
C
A
AB=BC=CA
=
√
13
+
h
²
+
4
h
=
√
13
+
h
²
−
4
h
=
4
=√13+h²+4h=√13+h²−4h=4
we get
h
²
+
4
h
−
3
=
0
h²+4h−3=0
h
²
−
4
h
−
3
=
0
h²−4h−3=0
adding the equations we get
2
h
²
−
6
=
0
2h²−6=0
h
²
−
3
=
0
h²−3=0
h
²
=
3
h²=3
h
=
√
3
h=√3
Hence, option
A
A is the correct answer.