Math, asked by gurpretkaur, 7 days ago

. If (2^3)^2 = 4n , then find n
(solve using steps)​

Answers

Answered by a2barnalidas
1

Answer:

(2^3)^2 =4n

2^(3×2) = 4n

2^6 = 2^2×n

n × 2^2 = 2^6

n = 2^6/2^2

n = 2^(6-2)

n = 2^4

n = 16

Answered by AwesomeBoy
1

 \huge \fcolorbox{red}{green}{ \bf \blue{n = 3}}

Step-by-step explanation:

Given -

  • (2³)² = 4

_____________________

To find -

  • The value of n

_____________________

Solution -

( {2}^{3}  {)}^{2}  =  {4}^{n}  \\  \\  =  >  {2}^{3 \times 2}  =  {(4)}^{n}  \\  \\  =  >  {2}^{6}  = ( {2}^{2}  {)}^{n}  \\  \\  =  >  {2}^{6}  =  {2}^{2 \times n}  \\  \\  =  > 6 = 2 \times n \\  \\  =  >  \cancel { \frac{6}{2}  {}}^{ \:  \: 3}  = n \\  \\  =  > n = 3

SO,

THE VALUE OF 'n' IS 3.

____________________

Formulas we used -

When bases are same (as here x),

( {x}^{m}  {)}^{n}  =  {x}^{m \times n}  \\  \\when \:  \\  {x}^{m}  =  {x}^{n}  \\ then \\ m = n

More Formulas we should remember for these type of calculations :-

 {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}  \\  {x}^{m}   \div  {x}^{n}  =   {x}^{m - n}

Similar questions