Math, asked by saurabhkushwaha999, 11 months ago

If 2/(√3+√5) + 5/(√3 -√5) = a√3 + b√5, find a & b.​

Answers

Answered by sanketj
0

 \frac{2}{ \sqrt{3} +  \sqrt{5}  }  +  \frac{5}{ \sqrt{3} -  \sqrt{5}  }  = a \sqrt{3}  + b \sqrt{5}  \\  \frac{2( \sqrt{3} -  \sqrt{5}  ) + 5( \sqrt{3} +  \sqrt{5}  )}{( \sqrt{3}   +   \sqrt{5})( \sqrt{3}  -  \sqrt{5})  }  = a \sqrt{3}  + b \sqrt{5}  \\  \frac{2 \sqrt{3}  - 2 \sqrt{5} + 5 \sqrt{3}   + 5 \sqrt{5} }{ ({ \sqrt{3} )}^{2}   -  {( \sqrt{5} )}^{2} }  = a \sqrt{3}  + b \sqrt{5}  \\  \frac{7 \sqrt{3}  + 3 \sqrt{5} }{3 - 5}  = a \sqrt{3}  + b \sqrt{5}  \\  \frac{7 \sqrt{3}  + 3 \sqrt{5} }{ - 2}  = a \sqrt{3}  + b \sqrt{5}   \\  -   \frac{(7 \sqrt{3} + 3 \sqrt{5})  }{2}  = a \sqrt{3}  + b \sqrt{5}  \\  \frac{ - 7 \sqrt{3} - 3 \sqrt{5}  }{2}  = a \sqrt{3}  + b \sqrt{3}  \\  \\ on \: comparing \: lhs \: and \: rhs \\  \\ a =  \frac{ - 7}{2}   \: and \: b =  \frac{ - 3}{2}

Similar questions