If 2^ = 3^ = 6^ , then find the relation between a, b and c.
Answers
Answered by
0
Correct question:
If 2^a = 3^b = 6^c , then find the relation between a , b and c .
Answer:
1/c = 1/a + 1/b
Note:
★ a^m × a^n = a^(m+n)
★ a^m / a^n = a^(m - n)
★ a^m × b^m = (a×b)^m
★ a^m / b^m = (a/b)^m
★ a^m = a^n => m = n
★ a^m = b => a = b^(1/m)
Solution:
Let 2^a = 3^b = 6^c = k
Thus,
If 2^a = k , then
2 = k^(1/a)
If 3^b = k , then
3 = k^(1/b)
If 6^c = k , then
6 = k^(1/c)
Now,
=> 6 = k^(1/c)
=> 2×3 = k^(1/c)
=> [ k^(1/a) ] × [ k^(1/b) ] = k^(1/c)
=> k^(1/a + 1/b) = k^(1/c)
=> 1/a + 1/b = 1/c
=> 1/c = 1/a + 1/b
Hence,
Required answer is ;
1/c = 1/a + 1/b
Similar questions