Math, asked by NirnoyCuber, 9 months ago

if 2/3 and -1/2 are the solutions of the quadratic equation 6x²+ax - b = 0 . Find the value of a and b​

Answers

Answered by ishwarsinghdhaliwal
13

Sum  \: of  \: zeroes \: =(α+β)=  \frac{2}{ 3 }  + \frac{ - 1}{2}   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{4 - 3}{6}  =  \frac{1}{6}   =  \frac{ - b}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ Product\: of  \: zeroes =  \alpha  \beta  =  \frac{2}{3}  \times  \frac{ - 1}{2}   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ - 1}{3}  =  \frac{c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

For quadratic polynomial

x²-(sum of zeroes)x +(Product of zeroes)=0

x²-(1/6)x+(-1/3)=0

 {x}^{2}   - \frac{ x}{6}   + \frac{ - 1  }{3}  = 0 \\ 6 {x}^{2}  - x - 2 = 0

Comparing the given polynomial( 6x²+ax - b = 0) with 6x²-x - 2 = 0, we get

a=-1 and b=2

Answered by devanshu07010
5

Answer:

yoooooooooooooo

Step-by-step explanation:

hiiiiiiiiiiiiiiiiiii

Similar questions