Math, asked by itzAashish, 2 months ago

if 2/3 and -3 are roots of the equation px²+7x+q=0 find p and q​

Answers

Answered by TheUntrustworthy
203

 { \red{ \bf{   Let's\:  substitute \:the\: given\: value}}}

 { \red{ \bf{    x = 2/3 \:in \:the \:expression,\: we \:get:}}}

px² + 7x + q = 0

p(2/3)² + 7(2/3) + q = 0

4p/9 + 14/3 + q = 0

 { \red{ \bf{   }}}

By taking LCM

4p + 42 + 9q = 0

 { \red{ \bf{   4p + 9q = – 42----------(1)}}}

 { \red{ \bf{Now,   }}}

 { \red{ \bf{  substitute\: the\: value\: x = -3 }}}

 { \red{ \bf{   in\: the \:expression,\: we\: get:}}}

px² + 7x + q = 0

p(-3)² + 7(-3) + q = 0

9p + q – 21 = 0

9p + q = 21

 { \red{ \bf{   q = 21 – 9-----------(2)}}}

 { \red{ \bf{   By \: substituting \: the\: value\: of \:q\: in\: eqn. (1),}}}

 { \red{ \bf{   We\: get:}}}

4p + 9q = – 42

4p + 9(21 – 9p) = -42

4p + 189 – 81p = -42

189 – 77p = -42

189 + 42 = 77p

231 = 77p

p = 231/77

 { \red{ \bf{  p = 3 }}}

 { \red{ \bf{ Now, \:substitute\: the\: value\: of\: p\: in \:equation (2),  }}}

 { \red{ \bf{  We \: get: }}}

q = 21 – 9p

= 21 – 9(3)

= 21 – 27

 { \red{ \bf{ = -6  }}}

 { \red{ \bf{ ∴ Value\: of \:p \: is \: 3 \: and \: q \: is \: -6.  }}}

\pink{}\red{Mark}\green{As}\blue{Brainliest}\orange{}

Answered by SweetLily
132

Concept used-

Here the concept of zeros of Quadratic polynomial is used. The roots of the quadratic equation is given as 2/3 and -3. We have to subsitute the roots(zeros) separately in px²+7x+q=0. Then we get two equation, 4p+9q= -42 and 9p+q= 21. Solve them by substitution method. We will get the value of p and q.

---------------------------------------------------

Solution

Roots

 \:\: \:\:  \bull \: \frac{2}{3} \\  \\ \:  \: \:  \:\:  \: \bull \: -3

Quadratic equation

 \sf{px²+7x+q=0}

 \mathtt{» \orange{First  \: subsitute \:  \frac{2}{3} }}

\mathtt{px²+7x+q}

\sf{\implies p×(\frac{2}{3}) ^{2}+7×\frac{2}{3} +q=0}

\sf{\implies \frac{4p}{9} +\frac{14}{3} +q = 0}

 \mathtt{ » \purple{Take \:LCM}}

\sf{\implies \frac{4p+42+9q}{9} =0}

\sf{\implies 4p+9q= -42} \:  \:  \:  \: ...(i)

 \mathtt{» \orange{Now \:  subsitute  \: -3 }}

\mathtt{px²+7x+q}

\sf{\implies p×(-3)² +7×(-3) +q=0}

\sf{\implies 9p-21+q= 0}

\sf{\implies 9p+q= 21}.    ...(ii)

»Now solve the equations by substitution method

 \mathtt{»From \:  equatîon \:  (ii)  \: we  \: have \:  q= 21-9p}

»subsitute in equation (i)

 \sf{ \implies4p+9q= -42}

 \sf{ \implies 4p+9(21-9p)= -42}

 \sf{ \implies 4p + 189 -81 p = -42}

 \sf{ \implies -77 p = -231}

 \sf{ \implies p= \frac{231}{77}}

 \sf{ \implies \green{ p= 3}}

❖ therefore the value of p is 3.

» Now subsitute the value of p = 3 in any of the equation to get the value of q.

 \sf{ \implies q= 21-9p}

 \sf{ \implies q= 21 - 9× 3}

 \sf{ \implies q= 21- 27}

 \sf{ \implies  \red{q= -6}}

❖ therefore the value of q is -6

------------------------------------------------------

Similar questions