Math, asked by starchase, 3 months ago

if 2/3 and -3 are the roots of the equation px² + x² + q =0 find the values of P and Q​

Answers

Answered by moongirl30
2

Answer:

Nature of roots of Q.E can be understood by evaluating the discriminant of the given Q.E.

Let’s find it.

Δ=b2−4ac

Δ=[5(p+q)2]−4(p−q)[−2(p−q)]

=25(p2+q2+2pq)−8(p−q)2

=25p2+25q2+50pq−8(p2+q2−2pq)

=25p2+25q2+50pq−8p2−8q2+16pq

=17p2+17q2+66pq

If values of p & q are both positive, then the roots are real.

Answered by TheUntrustworthy
125

Correct Question:

if 2/3 and -3 are the roots of the equation px² + 7x + q =0 find the values of P and Q

Solution:

 { \red{ \bf{   Let's\:  substitute \:the\: given\: value}}}

 { \red{ \bf{    x = 2/3 \:in \:the \:expression,\: we \:get:}}}

px² + 7x + q = 0

p(2/3)² + 7(2/3) + q = 0

4p/9 + 14/3 + q = 0

 { \red{ \bf{   }}}

By taking LCM

4p + 42 + 9q = 0

 { \red{ \bf{   4p + 9q = – 42----------(1)}}}

 { \red{ \bf{Now,   }}}

 { \red{ \bf{  substitute\: the\: value\: x = -3 }}}

 { \red{ \bf{   in\: the \:expression,\: we\: get:}}}

px² + 7x + q = 0

p(-3)² + 7(-3) + q = 0

9p + q – 21 = 0

9p + q = 21

 { \red{ \bf{   q = 21 – 9-----------(2)}}}

 { \red{ \bf{   By \: substituting \: the\: value\: of \:q\: in\: eqn. (1),}}}

 { \red{ \bf{   We\: get:}}}

4p + 9q = – 42

4p + 9(21 – 9p) = -42

4p + 189 – 81p = -42

189 – 77p = -42

189 + 42 = 77p

231 = 77p

p = 231/77

 { \red{ \bf{  p = 3 }}}

 { \red{ \bf{ Now, \:substitute\: the\: value\: of\: p\: in \:equation (2),  }}}

 { \red{ \bf{  We \: get: }}}

q = 21 – 9p

= 21 – 9(3)

= 21 – 27

 { \red{ \bf{ = -6  }}}

 { \red{ \bf{ ∴ Value\: of \:p \: is \: 3 \: and \: q \: is \: -6.  }}}

Similar questions