Math, asked by sagilisrichandana, 10 months ago

If 2,3 are two roots of the reciprocal equation 6x*5-41x*4+97x*3-97x*2+41x-6=0 then the other roots are


Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{2\;\;and\;\;3\;are\;roots\;of\;the\;reciprocal\;equation\;6x^5-41x^4+97x^3-97x^2+41x-6=0}

\underline{\textbf{To find:}}

\textsf{Other roots of the given equation}

\underline{\textbf{Solution:}}

\mathsf{Since\;2\;\;and\;\;3\;are\;roots\;of\;the\;reciprocal\;equation\;6x^5-41x^4+97x^3-97x^2+41x-6=0,}

\mathsf{\dfrac{1}{2}\;and\;\dfrac{1}{3}\;are\;also\;roots\;the\;equation}

\mathsf{Let\;the\;remining\;two\;roots\;be\;\alpha\;and\;\beta}

\mathsf{Sum\;of\;the\;roots=\dfrac{-(-41)}{6}}

\implies\mathsf{2+\dfrac{1}{2}+3+\dfrac{1}{3}+\alpha+\beta=\dfrac{41}{6}}

\implies\mathsf{\dfrac{5}{2}+\dfrac{10}{3}+\alpha+\beta=\dfrac{41}{6}}

\implies\mathsf{\dfrac{35}{6}+\alpha+\beta=\dfrac{41}{6}}

\implies\mathsf{\alpha+\beta=\dfrac{41}{6}-\dfrac{35}{6}}

\implies\mathsf{\alpha+\beta=1}----------(1)

\mathsf{Product\;of\;the\;roots=\dfrac{-(-6)}{6}}

\implies\mathsf{2{\times}\dfrac{1}{2}{\times}3{\times}\dfrac{1}{3}{\times}\alpha{\times}\beta=1}

\implies\mathsf{\alpha\,\beta=1}----------(2)

\mathsf{Using\;(1)\;in\;(2)}

\mathsf{\alpha(1-\alpha)=1}

\mathsf{\alpha-{\alpha}^2=1}

\mathsf{{\alpha}^2-\alpha+1=0}

\mathsf{Now,}

\mathsf{\alpha=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}

\mathsf{\alpha=\dfrac{1\pm\sqrt{1-4}}{2}}

\mathsf{\alpha=\dfrac{1\pm\sqrt{3i^2}}{2}}

\mathsf{\alpha=\dfrac{1\pm\,i\sqrt{3}}{2}}

\therefore\mathsf{when\;\alpha=\dfrac{1+\,i\sqrt{3}}{2}}

\mathsf{\beta=1-\left(\dfrac{1+\,i\sqrt{3}}{2}\right)=\dfrac{1-\,i\sqrt{3}}{2}}

\therefore\mathsf{when\;\alpha=\dfrac{1-\,i\sqrt{3}}{2}}

\mathsf{\beta=1-\left(\dfrac{1-\,i\sqrt{3}}{2}\right)=\dfrac{1+\,i\sqrt{3}}{2}}

\therefore\mathsf{Other\;roots\;are\;\dfrac{1}{2},\dfrac{1}{3},\dfrac{1+\,i\sqrt{3}}{2},\dfrac{1-\,i\sqrt{3}}{2}}

\underline{\textbf{Find more:}}

If the zeroes of cubic polynomial x3-15x2+74x-120 are the form a,a+b and a+2b for some positive real number, than the value of a and b are​

https://brainly.in/question/40663788  

Answered by SBIN0001197
1

Answer:

Step-by-step explanation:nrkeiskekeoekjejejdjjrjirirkekririjrjrjrir

Similar questions